
1

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A L I S A T I O N
E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-6:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-6

 February 2020

ICS 35.200; 35.240.15; 35.240.40

English version

 Extensions for Financial Services (XFS) interface
specification Release 3.40 - Part 6: PIN Keypad Device

Class Interface - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the
constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the
National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held
accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

2

Table of Contents

European Foreword .. 6

1. Introduction .. 10

1.1 Background to Release 3.40 ... 10

1.2 XFS Service-Specific Programming ... 10

2. PIN Keypad ... 12

2.1 Encrypting Touch Screen (ETS) ... 14

3. References ... 17

4. Info Commands ... 19

4.1 WFS_INF_PIN_STATUS ... 19

4.2 WFS_INF_PIN_CAPABILITIES .. 23

4.3 WFS_INF_PIN_KEY_DETAIL ... 42
4.4 WFS_INF_PIN_FUNCKEY_DETAIL ... 44

4.5 WFS_INF_PIN_HSM_TDATA ... 47

4.6 WFS_INF_PIN_KEY_DETAIL_EX .. 48

4.7 WFS_INF_PIN_SECUREKEY_DETAIL .. 51

4.8 WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL ... 55

4.9 WFS_INF_PIN_QUERY_PCIPTS_DEVICE_ID .. 56
4.10 WFS_INF_PIN_GET_LAYOUT ... 57

4.11 WFS_INF_PIN_KEY_DETAIL_340 ... 61

5. Execute Commands .. 63

5.1 Normal PIN Commands ... 63
5.1.1 WFS_CMD_PIN_CRYPT ..63
5.1.2 WFS_CMD_PIN_IMPORT_KEY ..66
5.1.3 WFS_CMD_PIN_DERIVE_KEY ..69
5.1.4 WFS_CMD_PIN_GET_PIN ...71
5.1.5 WFS_CMD_PIN_LOCAL_DES ..74
5.1.6 WFS_CMD_PIN_CREATE_OFFSET ...76
5.1.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE ...78
5.1.8 WFS_CMD_PIN_LOCAL_VISA ...80
5.1.9 WFS_CMD_PIN_PRESENT_IDC ...82
5.1.10 WFS_CMD_PIN_GET_PINBLOCK ...84
5.1.11 WFS_CMD_PIN_GET_DATA ..86
5.1.12 WFS_CMD_PIN_INITIALIZATION ..89
5.1.13 WFS_CMD_PIN_LOCAL_BANKSYS ...91
5.1.14 WFS_CMD_PIN_BANKSYS_IO ..92
5.1.15 WFS_CMD_PIN_RESET ...93
5.1.16 WFS_CMD_PIN_HSM_SET_TDATA ..94
5.1.17 WFS_CMD_PIN_SECURE_MSG_SEND ...96
5.1.18 WFS_CMD_PIN_SECURE_MSG_RECEIVE ..98
5.1.19 WFS_CMD_PIN_GET_JOURNAL ...100
5.1.20 WFS_CMD_PIN_IMPORT_KEY_EX ...101
5.1.21 WFS_CMD_PIN_ENC_IO ...104
5.1.22 WFS_CMD_PIN_HSM_INIT...106
5.1.23 WFS_CMD_PIN_SECUREKEY_ENTRY ..107

CWA 16926-6:2020 (E)

3

5.1.24 WFS_CMD_PIN_GENERATE_KCV ..110
5.1.25 WFS_CMD_PIN_SET_GUIDANCE_LIGHT ...111
5.1.26 WFS_CMD_PIN_MAINTAIN_PIN ...113
5.1.27 WFS_CMD_PIN_KEYPRESS_BEEP ...114
5.1.28 WFS_CMD_PIN_SET_PINBLOCK_DATA ...115
5.1.29 WFS_CMD_PIN_SET_LOGICAL_HSM ..116
5.1.30 WFS_CMD_PIN_IMPORT_KEYBLOCK ..118
5.1.31 WFS_CMD_PIN_POWER_SAVE_CONTROL ..119
5.1.32 WFS_CMD_PIN_DEFINE_LAYOUT ...120
5.1.33 WFS_CMD_PIN_START_AUTHENTICATE ..121
5.1.34 WFS_CMD_PIN_AUTHENTICATE ...123
5.1.35 WFS_CMD_PIN_GET_PINBLOCK_EX ..126
5.1.36 WFS_CMD_PIN_SYNCHRONIZE_COMMAND ..128
5.1.37 WFS_CMD_PIN_CRYPT_340 ..129
5.1.38 WFS_CMD_PIN_GET_PINBLOCK_340..133
5.1.39 WFS_CMD_PIN_IMPORT_KEY_340 ..135

5.2 Common commands for Remote Key Loading Schemes .. 138
5.2.1 WFS_CMD_PIN_START_KEY_EXCHANGE...138

5.3 Remote Key Loading Using Signatures .. 139
5.3.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY ..139
5.3.2 WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM ..142
5.3.3 WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY ..144
5.3.4 WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR ...147
5.3.5 WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM ...149

5.4 Remote Key Loading with Certificates .. 151
5.4.1 WFS_CMD_PIN_LOAD_CERTIFICATE ...151
5.4.2 WFS_CMD_PIN_GET_CERTIFICATE ..152
5.4.3 WFS_CMD_PIN_REPLACE_CERTIFICATE ..153
5.4.4 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY ..154
5.4.5 WFS_CMD_PIN_LOAD_CERTIFICATE_EX ...156
5.4.6 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX ..158

5.5 EMV ... 162
5.5.1 WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY ...162
5.5.2 WFS_CMD_PIN_DIGEST ...165

6. Events ... 166

6.1 WFS_EXEE_PIN_KEY .. 166

6.2 WFS_SRVE_PIN_INITIALIZED .. 167

6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS ... 168

6.4 WFS_SRVE_PIN_OPT_REQUIRED ... 169

6.5 WFS_SRVE_PIN_CERTIFICATE_CHANGE .. 170

6.6 WFS_SRVE_PIN_HSM_TDATA_CHANGED ... 171
6.7 WFS_SRVE_PIN_HSM_CHANGED ... 172

6.8 WFS_EXEE_PIN_ENTERDATA ... 173

6.9 WFS_SRVE_PIN_DEVICEPOSITION ... 174

6.10 WFS_SRVE_PIN_POWER_SAVE_CHANGE .. 175

6.11 WFS_EXEE_PIN_LAYOUT ... 176
6.12 WFS_EXEE_PIN_DUKPT_KSN ... 177

7. C - Header File ... 178

8. Appendix-A .. 200

CWA 16926-6:2020 (E)

4

8.1 Remote Key Loading Using Signatures .. 201
8.1.1 RSA Data Authentication and Digital Signatures ...201
8.1.2 RSA Secure Key Exchange using Digital Signatures ...202
8.1.3 Initialization Phase – Signature Issuer and ATM PIN ..204
8.1.4 Initialization Phase – Signature Issuer and Host ...205
8.1.5 Key Exchange – Host and ATM PIN ..206
8.1.6 Key Exchange (with random number) – Host and ATM PIN ...207
8.1.7 Enhanced RKL, Key Exchange (with random number) – Host and ATM PIN208
8.1.8 Default Keys and Security Item loaded during manufacture ...209

8.2 Remote Key Loading Using Certificates ... 210
8.2.1 Certificate Exchange and Authentication ..210
8.2.2 Remote Key Exchange ..211
8.2.3 Replace Certificate ..212
8.2.4 Primary and Secondary Certificates ..213
8.2.5 TR34 BIND To Host ...214
8.2.6 TR34 Key Transport..215
8.2.7 TR34 REBIND To New Host ...217
8.2.8 TR34 Force REBIND To New Host ...218
8.2.9 TR34 UNBIND From Host ...219
8.2.10 TR34 Force UNBIND From Host ...220

8.3 German ZKA GeldKarte (Deutsche Kreditwirtschaft)... 221
8.3.1 How to use the SECURE_MSG commands ..221
8.3.2 Protocol WFS_PIN_PROTISOAS ..222
8.3.3 Protocol WFS_PIN_PROTISOLZ ..223
8.3.4 Protocol WFS_PIN_PROTISOPS ...224
8.3.5 Protocol WFS_PIN_PROTCHIPZKA ..225
8.3.6 Protocol WFS_PIN_PROTRAWDATA ...226
8.3.7 Protocol WFS_PIN_PROTPBM ...227
8.3.8 Protocol WFS_PIN_PROTHSMLDI ..228
8.3.9 Protocol WFS_PIN_PROTGENAS ..229
8.3.10 Protocol WFS_PIN_PROTCHIPINCHG ..233
8.3.11 Protocol WFS_PIN_PROTPINCMP ...234
8.3.12 Protocol WFS_PIN_PROTISOPINCHG ..236
8.3.13 Command Sequence ..237

8.4 EMV Support ... 244
8.4.1 Keys loading..244
8.4.2 PIN Block Management ..246
8.4.3 SHA-1 Digest ..247

8.5 French Cartes Bancaires ... 248
8.5.1 Data Structure for WFS_CMD_PIN_ENC_IO ...248
8.5.2 Command Sequence ..250

8.6 Secure Key Entry ... 252
8.6.1 Keyboard Layout ...252
8.6.2 Command Usage ...256

8.7 WFS_PIN_USERESTRICTEDKEYENCKEY key usage .. 257
8.7.1 Command Usage ...257

8.8 WFS_CMD_PIN_IMPORT_KEY_340 command Input/Output Parameters 260
8.8.1 Importing a 3DES 16-byte terminal master key using signature-based remote key loading (SRKL):261
8.8.2 Importing a 16-byte DES key for PIN encryption with a key check value in the input263
8.8.3 Importing a 16-byte DES key for MACing (MAC Algorithm 3) ..265
8.8.4 Importing a 2048-bit Host RSA public key ...267
8.8.5 Importing a 24-byte DES symmetric data encryption key via TR-31 keyblock................................269

9. Appendix-B (Country Specific WFS_CMD_PIN_ENC_IO protocols) 270

9.1 Luxemburg Protocol .. 270
9.1.1 WFS_CMD_ENC_IO_LUX_LOAD_APPKEY ...272
9.1.2 WFS_CMD_ENC_IO_LUX_GENERATE_MAC ...274
9.1.3 WFS_CMD_ENC_IO_LUX_CHECK_MAC ...275

CWA 16926-6:2020 (E)

5

9.1.4 WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK ...276
9.1.5 WFS_CMD_ENC_IO_LUX_DECRYPT_TDES ...277
9.1.6 WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES ...278
9.1.7 Luxemburg-specific Header File ...279

9.2 China Protocol .. 281
9.2.1 WFS_CMD_ENC_IO_CHN_DIGEST ...284
9.2.2 WFS_CMD_ENC_IO_CHN_SET_SM2_PARAM ..285
9.2.3 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY ..286
9.2.4 WFS_CMD_ENC_IO_CHN_SIGN ..288
9.2.5 WFS_CMD_ENC_IO_CHN_VERIFY ...290
9.2.6 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM291
9.2.7 WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR ...293
9.2.8 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM ...294
9.2.9 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY ..296
9.2.10 China-specific Header File ..299

10. Appendix–C (Standardized lpszExtra fields) ... 304

10.1 WFS_INF_PIN_STATUS ... 304

10.2 WFS_INF_PIN_CAPABILITIES .. 305

11. Appendix–D (TR-31 Key Use) ... 308

12. Appendix-E (DUKPT) ... 310

12.1 Default Key Name... 310

CWA 16926-6:2015 (E)

6

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations – Part 2. It was approved by a Workshop of representatives of interested
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• ATM Japan LTD

• AURIGA SPA

• BANK OF AMERICA

• CASHWAY TECHNOLOGY

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO.

• CIMA SPA

• CLEAR2PAY SCOTLAND LIMITED

• DIEBOLD NIXDORF

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM

• FINANZ INFORMATIK

• FUJITSU FRONTECH LIMITED

• FUJITSU TECHNOLOGY

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HESS CASH SYSTEMS GMBH & CO. KG

• HITACHI OMRON TS CORP.

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA AG

• NCR FSG

• NEC CORPORATION

• OKI ELECTRIC INDUSTRY SHENZHEN

CWA 16926-6:2020 (E)

7

• OKI ELECTRONIC INDUSTRY CO

• PERTO S/A

• REINER GMBH & CO KG

• SALZBURGER BANKEN SOFTWARE

• SIGMA SPA

• TEB

• ZIJIN FULCRUM TECHNOLOGY CO

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-6, but this does not guarantee, either explicitly or implicitly, its correctness. Users
of CWA 16926-6 should be aware that neither the Workshop participants, nor CEN can be held liable for damages
or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-6 do so on their own
responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

CWA 16926-6:2015 (E)

8

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to
Version 3.40 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40

CWA 16926-6:2020 (E)

9

(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx

CWA 16926-6:2015 (E)

10

1. Introduction

1.1 Background to Release 3.40

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software
interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed
within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop
environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN
Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to
create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.40 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification. Notable enhancements include:

• Common API level based ‘Service Information’ command to report Service Provider information,
data and versioning.

• Common API level based events to report changes in status and invalid parameters.

• Support for Advanced Encryption Standard (AES) in PIN.

• VDM Entry Without Closing XFS Service Providers.

• Addition of a Biometrics device class.

• CDM/CIM Note Classification List handling.

• Support for Derived Unique Key Per Transaction (DUKPT) in PIN.

• Addition of Transaction Start/End commands.

• Addition of explicit CIM Prepare/Present commands.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or

CWA 16926-6:2020 (E)

11

WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example
would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not
have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is
unable to fulfil the request, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error
for Info commands is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how
to use the service.

CWA 16926-6:2015 (E)

12

2. PIN Keypad

This section describes the application program interface for personal identification number keypads (PIN pads) and
other encryption/decryption devices. This description includes definitions of the service-specific commands that
can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This section describes the general interface for the following functions:

• Administration of encryption devices

• Loading of encryption keys

• Encryption / decryption

• Entering Personal Identification Numbers (PINs)

• PIN verification

• PIN block generation (encrypted PIN)

• Clear text data handling

• Function key handling

• PIN presentation to chipcard

• Read and write safety critical Terminal Data from/to HSM

• HSM and Chipcard Authentication

• EMV 4.0 PIN blocks, EMV 4.0 public key loading, static and dynamic data verification

If the PIN pad device has local display capability, display handling should be handled using the Text Terminal Unit
(TTU) interface.

The adoption of this specification does not imply the adoption of a specific security standard.

Important Notes:

• This revision of this specification does not define all key management procedures; some key management
is still vendor-specific.

• Key space management is customer-specific, and is therefore handled by vendor-specific mechanisms.

• Only numeric PIN pads are handled in this specification.

This specification also supports the Hardware Security Module (HSM), which is necessary for the German ZKA
Electronic Purse transactions. Furthermore the HSM stores terminal specific data.

This data will be compared against the message data fields (Sent and Received ISO8583 messages) prior to HSM-
MAC generation/verification. HSM-MACs are generated/verified only if the message fields match the data stored.

Keys used for cryptographic HSM functions are stored separate from other keys. This must be considered when
importing keys.

This version of PIN pad complies to the current ZKA specification 3.0. It supports loading and unloading against
card account for both card types (Type 0 and Type 1) of the ZKA electronic purse. It also covers the necessary
functionality for ‘Loading against other legal tender’.

Key values are passed to the API as binary hexadecimal values, for example:
 0123456789ABCDEF = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF

When hex values are passed to the API within strings, the hex digits 0xA to 0xF can be represented by characters in
the ranges ‘a’ to ‘f’ or ‘A’ to ‘F’.

The following commands and events were initially added to support the German ZKA standard, but may also be
used for other national standards:

• WFS_INF_PIN_HSM_TDATA

• WFS_CMD_PIN_HSM_SET_TDATA

• WFS_CMD_PIN_SECURE_MSG_SEND

CWA 16926-6:2020 (E)

13

• WFS_CMD_PIN_SECURE_MSG_RECEIVE

• WFS_CMD_PIN_GET_JOURNAL

• WFS_SRVE_PIN_OPT_REQUIRED

• WFS_CMD_PIN_HSM_INIT

• WFS_SRVE_PIN_HSM_TDATA_CHANGED

Certain levels of the PCI EPP security standards specify that if a key encryption key is deleted or replaced, then all
keys in the hierarchy under that key encryption key are also removed. Key encryption keys have the
WFS_PIN_USEKEYENCKEY type of access. Applications can check impact of key deletion using
WFS_INF_PIN_KEY_DETAIL or WFS_INF_PIN_KEY_DETAIL_EX.

CWA 16926-6:2015 (E)

14

2.1 Encrypting Touch Screen (ETS)

An encrypting touch screen device is a touch screen securely attached to a cryptographic device. It can be used as
an alternative to an encrypting pin pad (EPP). It supports key management, encryption and decryption.

It is assumed that the ETS is a combined device. It overlays a display monitor which is used to display lead-through
for a transaction. It is assumed that the display monitor is part of the Windows desktop, and can be the Windows
primary monitor or any other monitor on the desktop. E.g. the following diagram shows 2 monitors extended across
the desktop, with monitor 1 being the primary monitor and the ETS being overlaid on monitor 2 whose origin is (-
1680.0).

The touch screen can optionally be used as a “mouse” for application purposes, while XFS PIN operations are not
in progress or optionally when non-secure XFS PIN commands are in progress.

The CEN interface supports two types of ETS

• Those which activate touch areas defined by the application.

• Those which activate a random variation of touch areas defined by the application.

The Service Provider, when reporting its capabilities, reports the absolute position of the ETS in Windows desktop
coordinates. This allows the application to locate the ETS device in a multi-monitor system and relate it to a
monitor on the desktop.

At any point in time, a single touch area of the ETS can operate in one of 4 modes:-

• Mouse mode - a “touch” simulates a mouse click. This mode is optional. This may not be supported by
some ETS devices. Configuration of the click is vendor specific. e.g. WM_LBUTTONDOWN. This is
also the mode that, if supported, is active when none of the other modes are active.

• XFS Data mode - a “touch” maps to an XFS key and the value of the key is returned in an event (as in
clear numeric entry using WFS_CMD_PIN_GET_DATA).

• XFS PIN mode - a “touch” maps to an XFS key and the value of the key is returned in an event only if the
key pressed is not WFS_PIN_FK_0 through WFS_PIN_FK_9 (as in PIN entry using
WFS_CMD_PIN_GET_PIN).

• XFS Secure mode - a “touch” maps to an XFS key and the value of the key is returned in an event only if
the key pressed is not WFS_PIN_FK_0 through WFS_PIN_FK_9 and not WFS_PIN_FK_A through
WFS_PIN_FK_F (as in key entry using WFS_CMD_PIN_SECUREKEY_ENTRY).

The following concepts are introduced to define the relationship between the monitor and the ETS:-

• Touch Key – an area of the monitor which reacts to touch in XFS Data, PIN and Secure modes.

• Touch Frame – an area of the monitor onto which Touch Keys can be placed. There can be one or more
Touch Frames. There may be just one Touch Frame which covers the whole monitor. Areas within a
Touch Frame, not defined as a Touch Key, do not react to touch. Generally in XFS PIN and Secure modes,
there would be only one Touch Frame covering the whole monitor. An empty Touch Frame disables that
part of the monitor.

CWA 16926-6:2020 (E)

15

• Mouse area – an area outside of all Touch Frames in which touches behave like a mouse

• Thus XFS Data, PIN and Secure modes operate in a single Touch Frame or multiple Touch Frames.
Mouse mode operates outside a Touch Frame, and is optional.

Note that there is a perceived risk in separating the drawing functionality from the touch functionality, but this type
of risk is present in today’s keyboard based systems. e.g. An application can draw on a monitor to prompt the user
to enter a PIN and then enables the EPP for clear data entry. So the risk is no different than with an EPP – the
application has to be trusted.

Depending upon the type of device, the application must then either inform the Service Provider as to the active key
positions in the form of Touch Frames and Touch Keys using the WFS_CMD_PIN_DEFINE_LAYOUT command,
or obtain them from the Service Provider using the WFS_INF_PIN_GET_LAYOUT command. This collection is
now referred to as a “Touch Keyboard definition”.

The application then uses the normal PIN commands to enable the touch keyboard definition on the ETS device:

• PIN entry WFS_CMD_PIN_GET_PIN

• Clear data entry WFS_CMD_PIN_GET_DATA

• Secure key entry WFS_CMD_PIN_SECUREKEY_ENTRY

These commands are referred to as “keyboard entry commands” throughout the remainder of this document.

PCI compliance means that WFS_CMD_PIN_GET_PIN and WFS_CMD_PIN_SECUREKEY_ENTRY can only
be used with a single Touch Frame that covers the entire monitor. i.e. Mouse mode cannot be mixed with either
XFS PIN or Secure mode. If a Touch Key (or areas) is defined for an XFS key value and that key value is not
subsequently specified as active in a WFS_CMD_PIN_GET_PIN, WFS_CMD_PIN_GET_DATA or
WFS_CMD_PIN_SECUREKEY_ENTRY command, then the Touch Key is made inactive.

Layouts defined with the WFS_CMD_PIN_DEFINE_LAYOUT command are persistent.

Example 1 – this screen only uses XFS Data mode – the entire screen is a Touch Frame. Mouse mode is not used.

Example 2 – this shows a monitor with two Touch Frames and 14 Touch Keys. The space within the Touch Frames
not defined by a Touch Key are inactive (do not respond to touch). All areas outside a Touch Frame operate in
Mouse mode. This example shows two Mouse mode “keys”. e.g. Windows “Button”, HTML “BUTTON” or a
custom control. Other touches in Mouse mode are normally dealt with by the application event engine. However,
this can be restricted – see example 3.

Example 3 – this screen uses Mouse and XFS Data modes – Mouse mode is used only in a restricted area. The
touch keyboard definition has 3 frames. Frame 1 has no Touch Keys. Frame 2 has 2 Touch Keys; Frame 3 has 12
Touch Keys.

CWA 16926-6:2015 (E)

16

CWA 16926-6:2020 (E)

17

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.40
2. RSA Laboratories, PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993
3. SHA-1 Hash algorithm ANSI X9.30-2:1993, Public Key Cryptography for Financial Services Industry Part2
4. EMVCo, EMV2000 Integrated Circuit Card Specification for Payment Systems, Book 2 – Security and Key
Management, Version 4.0, December 2000
5. Europay International, EPI CA Module Technical – Interface specification Version 1.4
6. ZKA / Bank-Verlag, Köln, Schnittstellenspezifikation für die ec-Karte mit Chip, Online-Personalisierung von
Terminal-HSMs, Version 3.0, 2. 4. 1998
7. ZKA / Bank-Verlag, Köln, Schnittstellenspezifikation für die ZKA-Chipkarte, Online-Vor-Initialisierung und
Online-Anzeige einer Außerbetriebnahme von Terminal-HSMs, Version 1.0, 04.08.2000
8. 473x Programmers Reference Volume 1 - TP-820399-001A
9. 473x Programmers Reference Volume 2 - TP-820403-001A
10. 473x Programmers Reference Volume 3 - TP-820400-001A
11. 473x Programmers Reference Volume 4 - TP-820404-001A
12. 473x P-Model Programmers Reference - TP-820397-001A
13. 473x Log Reference Guide - TP-820398-001A
14. Diebold‘s Specification for support of Online Preinitialization and Personalization of Terminal HSMs (OPT)
and support for the PAC/MAC standards for the 473x Protocol, Diebold USA, Revision 1.10, revised on May 2002
15. Groupement des Cartes Bancaires “CB”, Description du format et du contenu des données cryprographiques
échangées entre GAB et GDG, Version 1.3 / Octobre 2002
16. ITU-T Recommendation X.690 – ASN.1 encoding rules (also published as ISO/IEC International Standard
8825-1), 1997
17. German ZKA specification, published by: Bank-Verlag Koeln, Post Box 300191, 50771 Cologne, Germany;
Tel: +49 221 5490-0; Fax: +49 221 5490-120
18. Banksys document “SCM DKH Manual Rel 2.x”
19. Diebold‘s and IBM‘s Specification for support of Online Preinitialization and Personalization of Terminal
HSMs (OPT) and support for the PAC/MAC standards for the 473x Protocol, Diebold USA, Revision 1.8, revised
on Jan-03-2001
20. ANSI X3.92, American National Standard for Data Encryption Algorithm (DEA), American National
Standards Institute, 1983
21. ANSI X9.8-1995, Banking – Personal Identification Number Management and Security, Part 1 + 2, American
National Standards Institute
22. ISO 9564-1, Banking – Personal Identification Number management and security, Part 1, First Edition 1991-
12-15, International Organization for Standardization
23. ISO 9564-2, Banking – Personal Identification Number management and security, Part 2, First Edition 1991-
12-15, International Organization for Standardization
24. IBM, Common Cryptographic Architecture: Cryptographic Application Programming Interface, SC40-1675-1,
IBM Corp., Nov 1990
25. R:L: Rivest, A. Shamir, and L.M. Adleman, A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems, Communications of the ACM, v. 21, n.2, Feb 1978, pp. 120-126
26. Security for Computer Networks by Donald W. Davies & William L. Price, Second Edition, John Wiley &
Sons, 1989
27. Regelwerk für das deutsche ec-Geldautomaten-System, Stand: 22. Nov. 1999
28. Bank-Verlag, Köln, Autorisierungszentrale GA/POS der privaten Banken, Spezifikation für GA-Betreiber,
Version 3.12, 31. Mai 2000
29. dvg Hannover, Schnittstellenbeschreibung für Autorisierungsanfragen bei nationalen GA-Verfügungen unter
Verwendung der Spur 3, Version 2.5, Stand: 15.03.2000
30. dvg Hannover, Schnittstellenbeschreibung für Autorisierungsanfragen bei internationalen Verfügungen unter
Verwendung der Spur 2, Version 2.6, Stand: 30.03.2000
31. ZKA / Bank-Verlag, Köln,.Schnittstellenspezifikation für die ec-Karte mit Chip, Geldkarte Ladeterminals,
Version 3.0, 2. 4. 1998
32. ISO/IEC 9797-1: 1999
33. ISO 8731-2
34. ZKA / Bank-Verlag, Köln, Schnittstellenspezifikation für die ec-Karte mit Chip
PIN-Änderungsfunktion, Version 3.0, 12.05.1999
35. ANS X9 TR-31 2018, Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithms

CWA 16926-6:2015 (E)

18

36. Oliself2 Specifiche Tecniche, PIN Block Detail for WFS_PIN_FORMAP
37. PCI Security Standards Council PCI PTS approval list
https://www.pcisecuritystandards.org/approved_companies_providers/approved_pin_transaction_security.php
38. ISO 16609:2004 Financial Services – Requirements for message authentication using symmetric techniques
39. Australian Standard 2805.4 Electronic Funds Transfer – Requirements for Interface Part 4 – Message
Authentication
40. ISO/IEC 10118-3:2004 Information technology – Security techniques – Hash-functions – Part 3: Dedicated
hash-functions
41. FIPS 180-2 Secure Hash Signature Standard
42. ANS X9 TR-34 2012, Interoperable Method for Distribution of Symmetric Keys using Asymmetric
Techniques: Part 1 – Using Factoring-Based Public Key Cryptography Unilateral Key Transport
43. Password industry standard of the People's Republic of China GM/T 0002-2012, GM/T 0003.1-2012, GM/T
0003.2-2012, GM/T 0003.3-2012, GM/T 0003.4-2012, GM/T 0003.5-2012, GM/T 0004-2012.
44. Financial industry standard of the People’s Republic of China PBOC3.0 JR/T 0025.17-2013.
45. ANS X9.24-1:2009, Retail Financial Services Symmetric Key Management Part 1: Using Symmetric
Techniques
46. ISO/IEC 18033-3:2010 Information technology -- Security techniques -- Encryption algorithms -- Part 3: Block
ciphers
47. FIPS PUB 197: Advanced Encryption Standard (AES)
48. ISO/IEC 9564-1:2017 Financial services – Personal Identification Number (PIN) management and security –
Part 1: Basic principles and requirements for PINs in card-based systems
49. NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation
50. NIST Special Publication 800-38E: Recommendation for Block Cipher Modes of Operation: the XTS-AES
Mode for Confidentiality on Storage Devices
51. Deutsche Kreditwirtschaft AES specification published by: The German Banking Industry Committee (GBIC) :
Contact: info@die-dk.de

CWA 16926-6:2020 (E)

19

4. Info Commands

4.1 WFS_INF_PIN_STATUS

Description This command returns several kinds of status information.

Input Param None.

Output Param LPWFSPINSTATUS lpStatus;
typedef struct _wfs_pin_status
 {
 WORD fwDevice;
 WORD fwEncStat;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_PIN_GUIDLIGHTS_SIZE];
 WORD fwAutoBeepMode;
 DWORD dwCertificateState;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
 } WFSPINSTATUS, *LPWFSPINSTATUS;

fwDevice
Specifies the state of the PIN pad device as one of the following flags:

Value Meaning
WFS_PIN_DEVONLINE The device is online (i.e. powered on and

operable).
WFS_PIN_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).
WFS_PIN_DEVPOWEROFF The device is powered off or physically not

connected.
WFS_PIN_DEVNODEVICE There is no device intended to be there; e.g.

this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_PIN_DEVHWERROR The device is inoperable due to a hardware
error.

WFS_PIN_DEVUSERERROR The device is present but a person is
preventing proper device operation.

WFS_PIN_DEVBUSY The device is busy and unable to process an
execute command at this time.

WFS_PIN_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_PIN_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

fwEncStat
Specifies the state of the encryption module as one of the following flags:

Value Meaning
WFS_PIN_ENCREADY The encryption module is initialized and

ready (at least one key is imported into the
encryption module).

WFS_PIN_ENCNOTREADY The encryption module is not available or
not ready due to hardware error or
communication error.

WFS_PIN_ENCNOTINITIALIZED The encryption module is not initialized (no
master key loaded).

WFS_PIN_ENCBUSY The encryption module is busy (implies that
the device is busy).

CWA 16926-6:2015 (E)

20

WFS_PIN_ENCUNDEFINED The encryption module state is undefined.
WFS_PIN_ENCINITIALIZED The encryption module is initialized and

master key (where required) and any other
initial keys are loaded; ready to import other
keys.

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is returned
as a series of “key=value” strings so that it is easily extendable by Service Providers. Each string
will be null-terminated, the whole list terminated with an additional null character. An empty list
may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

A number of lpszExtra key value pairs have been standardized during previous releases of the PIN
specification. These values have now been added to the main status structure but the standardized
key value pairs in lpszExtra must still be supported by the Service Provider when the functionality
is supported. Section 10 defines the standardized lpszExtra key value pairs.

dwGuidLights [...]
Specifies the state of the guidance light indicators. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_PIN_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as
WFS_PIN_GUIDANCE_NOT_AVAILABLE, WFS_PIN_GUIDANCE_OFF or a combination
of the following flags consisting of one type B, optionally one type C and optionally one type D.

Value Meaning Type
WFS_PIN_GUIDANCE_NOT_AVAILABLE The status is not available. A
WFS_PIN_GUIDANCE_OFF The light is turned off. A
WFS_PIN_GUIDANCE_SLOW_FLASH The light is blinking slowly. B
WFS_PIN_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.
WFS_PIN_GUIDANCE_QUICK_FLASH The light is blinking quickly. B
WFS_PIN_GUIDANCE_CONTINUOUS The light is turned on continuous B

(steady).
WFS_PIN_GUIDANCE_RED The light is red. C
WFS_PIN_GUIDANCE_GREEN The light is green. C
WFS_PIN_GUIDANCE_YELLOW The light is yellow. C
WFS_PIN_GUIDANCE_BLUE The light is blue. C
WFS_PIN_GUIDANCE_CYAN The light is cyan. C
WFS_PIN_GUIDANCE_MAGENTA The light is magenta. C
WFS_PIN_GUIDANCE_WHITE The light is white. C
WFS_PIN_GUIDANCE_ENTRY The light is in the entry state. D
WFS_PIN_GUIDANCE_EXIT The light is in the exit state. D

dwGuidLights [WFS_PIN_GUIDANCE_PINPAD]
Specifies the state of the guidance light indicator on the PIN pad unit.

fwAutoBeepMode
Specifies whether automatic beep tone on key press is active or not. Active and in-active key
beeping is reported independently. fwAutoBeepMode can take a combination of the following
values, if the flag is not set auto beeping is not activated (or not supported) for that key type (i.e.
active or in-active keys):

Value Meaning
WFS_PIN_BEEP_ON_ACTIVE An automatic tone will be generated for all

active keys.
WFS_PIN_BEEP_ON_INACTIVE An automatic tone will be generated for all

in-active keys.

dwCertificateState
Specifies the state of the public verification or encryption key in the PIN certificate modules as
one of the following flags:

CWA 16926-6:2020 (E)

21

Value Meaning
WFS_PIN_CERT_UNKNOWN The state of the certificate module is unknown

or the device does not have this capability.
WFS_PIN_CERT_PRIMARY All pre-loaded certificates have been loaded

and that primary verification certificates will be
accepted for the commands
WFS_CMD_PIN_LOAD_CERTIFICATE or
WFS_CMD_PIN_REPLACE_CERTIFICATE.

WFS_PIN_CERT_SECONDARY Primary verification certificates will not be
accepted and only secondary verification
certificates will be accepted. If primary
certificates have been compromised (which the
certificate authority or the host detects), then
secondary certificates should be used in any
transaction. This is done by calling the
WFS_CMD_PIN_LOAD_CERTIFICATE
command or the
WFS_CMD_PIN_REPLACE_CERTIFICATE.

WFS_PIN_CERT_NOTREADY The certificate module is not ready. (The
device is powered off or physically not
present).

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_PIN_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_PIN_DEVONLINE or
WFS_PIN_DEVOFFLINE). This value is one of the following values:

Value Meaning
WFS_PIN_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_PIN_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_PIN_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_PIN_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_PIN_AFMNOTSUPP No anti-fraud module is available.
WFS_PIN_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_PIN_AFMINOP Anti-fraud module is inoperable.
WFS_PIN_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_PIN_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

In the case where communications with the device have been lost, the fwDevice field will report
WFS_PIN_DEVPOWEROFF when the device has been removed or WFS_PIN_DEVHWERROR

CWA 16926-6:2015 (E)

22

if the communications are unexpectedly lost. All other fields should contain a value based on the
following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16926-6:2020 (E)

23

4.2 WFS_INF_PIN_CAPABILITIES

Description This command is used to retrieve the capabilities of the PIN pad.

Input Param None.

Output Param LPWFSPINCAPS lpCaps;
typedef struct _wfs_pin_caps
 {
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usKeyNum;
 WORD fwAlgorithms;
 WORD fwPinFormats;
 WORD fwDerivationAlgorithms;
 WORD fwPresentationAlgorithms;
 WORD fwDisplay;
 BOOL bIDConnect;
 WORD fwIDKey;
 WORD fwValidationAlgorithms;
 WORD fwKeyCheckModes;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_PIN_GUIDLIGHTS_SIZE];
 BOOL bPINCanPersistAfterUse;
 WORD fwAutoBeep;
 LPSTR lpsHSMVendor;
 BOOL bHSMJournaling;
 DWORD dwRSAAuthenticationScheme;
 DWORD dwRSASignatureAlgorithm;
 DWORD dwRSACryptAlgorithm;
 DWORD dwRSAKeyCheckMode;
 DWORD dwSignatureScheme;
 LPWORD lpwEMVImportSchemes;
 WORD fwEMVHashAlgorithm;
 BOOL bKeyImportThroughParts;
 WORD fwENCIOProtocols;
 BOOL bTypeCombined;
 BOOL bSetPinblockDataRequired;
 WORD fwKeyBlockImportFormats;
 BOOL bPowerSaveControl;
 BOOL bAntiFraudModule;
 WORD wDESKeyLength;
 WORD wCertificateTypes;
 LPWFSPINSIGNERCAP *lppLoadCertOptions;
 DWORD dwCRKLLoadOptions;
 LPWFSPINETSCAPS lpETSCaps;
 LPDWORD lpdwSynchronizableCommands;
 LPWFSPINRESTKEYENCKEY *lppRestrictedKeyEncKeySupport;
 DWORD dwSymmetricKeyManagementMethods;
 LPWFSPINATTRIBUTES *lppCryptAttributes;
 LPWFSPINATTRIBUTES *lppPINBlockAttributes;
 LPWFSPINATTRIBUTES *lppKeyAttributes;
 LPWFSPINATTRIBUTES *lppDecryptAttributes;
 LPWFSPINATTRIBUTES *lppVerifyAttributes;
 } WFSPINCAPS, *LPWFSPINCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_PIN.

fwType
Specifies the type of the PIN pad security module as a combination of the following flags. PIN
entry is only possible when at least WFS_PIN_TYPEEPP and WFS_PIN_TYPEEDM, or
WFS_PIN_TYPEETS and WFS_PIN_TYPEEDM are set. In order to use the ZKA-Electronic
purse, WFS_PIN_TYPEEDM, WFS_PIN_TYPEHSM and one data entry device
(WFS_PIN_TYPEEPP or WFS_PIN_TYPEETS) flags must be set.

CWA 16926-6:2015 (E)

24

Value Meaning
WFS_PIN_TYPEEPP Electronic PIN pad (keyboard data entry

device).
WFS_PIN_TYPEEDM Encryption/decryption module.
WFS_PIN_TYPEHSM Hardware security module (electronic PIN

pad and encryption module within the same
physical unit).

WFS_PIN_TYPEETS Encrypting Touch Screen (touch screen data
entry device).

bCompound
Specifies whether the logical device is part of a compound physical device.

usKeyNum
Number of the keys which can be stored in the encryption/decryption module.

fwAlgorithms
Supported encryption modes; a combination of the following flags:

Value Meaning
WFS_PIN_CRYPTDESECB Electronic Code Book.
WFS_PIN_CRYPTDESCBC Cipher Block Chaining.
WFS_PIN_CRYPTDESCFB Cipher Feed Back.
WFS_PIN_CRYPTRSA RSA Encryption.
WFS_PIN_CRYPTECMA ECMA Encryption.
WFS_PIN_CRYPTDESMAC MAC calculation using CBC.
WFS_PIN_CRYPTTRIDESECB Triple DES with Electronic Code Book.
WFS_PIN_CRYPTTRIDESCBC Triple DES with Cipher Block Chaining.
WFS_PIN_CRYPTTRIDESCFB Triple DES with Cipher Feed Back.
WFS_PIN_CRYPTTRIDESMAC Last Block Triple DES MAC as defined in

ISO/IEC 9797-1:1999 [Ref. 32], using: block
length n=64, Padding Method 1 (when
bPadding=0), MAC Algorithm 3, MAC
length m where 32<=m<=64.

WFS_PIN_CRYPTMAAMAC MAC calculation using the Message
authenticator algorithm as defined in ISO
8731-2 [Ref. 33].

WFS_PIN_CRYPTTRIDESMAC2805 Triple DES MAC calculation as defined in
ISO 16609:2004 [Ref. 38] and Australian
Standard 2805.4 [Ref. 39].

WFS_PIN_CRYPTSM4 SM4 block cipher algorithm as defined in
Password industry standard of the People's
Republic of China GM/T 0002-2012 [Ref.
43].

WFS_PIN_CRYPTSM4MAC MAC calculation using the Message
authenticator algorithm as defined in as
defined in Password industry standard of the
People's Republic of China GM/T 0002-
2012 [Ref. 43] and in PBOC3.0 JR/T
0025.17-2013 [Ref. 44].

fwPinFormats
Supported PIN formats; a combination of the following flags:

Value Meaning
WFS_PIN_FORM3624 PIN left justified, filled with padding

characters, PIN length 4-16 digits. The
padding character is a hexadecimal digit in
the range 0x00 to 0x0F.

WFS_PIN_FORMANSI PIN is preceded by 0x00 and the length of
the PIN (0x04 to 0x0C), filled with padding
character 0x0F to the right, PIN length 4-12
digits, XORed with PAN (Primary Account
Number, minimum 12 digits without check
number).

CWA 16926-6:2020 (E)

25

WFS_PIN_FORMISO0 PIN is preceded by 0x00 and the length of
the PIN (0x04 to 0x0C), filled with padding
character 0x0F to the right, PIN length 4-12
digits, XORed with PAN (Primary Account
Number without check number, no minimum
length specified, missing digits are filled
with 0x00).

WFS_PIN_FORMISO1 PIN is preceded by 0x01 and the length of
the PIN (0x04 to 0x0C), padding characters
are taken from a transaction field (10 digits).

WFS_PIN_FORMECI2 (similar to WFS_PIN_FORM3624), PIN
only 4 digits.

WFS_PIN_FORMECI3 PIN is preceded by the length (digit), PIN
length 4-6 digits, the padding character can
range from 0x0 through 0xF.

WFS_PIN_FORMVISA PIN is preceded by the length (digit), PIN
length 4-6 digits. If the PIN length is less
than six digits the PIN is filled with 0x0 to
the length of six, the padding character can
range from 0x0 through 0x9 (This format is
also referred to as VISA2).

WFS_PIN_FORMDIEBOLD PIN is padded with the padding character
and may be not encrypted, single encrypted
or double encrypted.

WFS_PIN_FORMDIEBOLDCO PIN with the length of 4 to 12 digits, each
one with a value of 0x0 to 0x9, is preceded
by the one-digit coordination number with a
value from 0x0 to 0xF, padded with the
padding character with a value from 0x0 to
0xF and may be not encrypted, single
encrypted or double encrypted.

WFS_PIN_FORMVISA3 PIN with the length of 4 to 12 digits, each
one with a value of 0x0 to 0x9, is followed
by a delimiter with the value of 0xF and then
padded by the padding character with a value
between 0x0 to 0xF.

WFS_PIN_FORMBANKSYS PIN is encrypted and formatted according to
the Banksys PIN block specifications.

WFS_PIN_FORMEMV The PIN block is constructed as follows: PIN
is preceded by 0x02 and the length of the
PIN (0x04 to 0x0C), filled with padding
character 0x0F to the right, formatted up to
248 bytes of other data as defined within the
EMV 4.0 specifications and finally
encrypted with an RSA key.

WFS_PIN_FORMISO3 PIN is preceded by 0x03 and the length of
the PIN (0x04 to 0x0C), padding characters
sequentially or randomly chosen, XORed
with digits from PAN.

WFS_PIN_FORMAP PIN is formatted according to the Italian
Bancomat specifications. It is known as the
Authentication Parameter PIN block and is
created with a 5 digit PIN, an 18 digit PAN,
and the 8 digit CCS from the track data.

WFS_PIN_FORMISO4 PIN is formatted according to ISO 9564-1:
2017 Format-4 (uses AES Encryption).

fwDerivationAlgorithms
Supported derivation algorithms; a combination of the following flags:

CWA 16926-6:2015 (E)

26

Value Meaning
WFS_PIN_CHIP_ZKA Algorithm for the derivation of a chip card

individual key as described by the German
ZKA.

fwPresentationAlgorithms
Supported presentation algorithms; a combination of the following flags:

Value Meaning
WFS_PIN_PRESENT_CLEAR Algorithm for the presentation of a clear text

PIN to a chipcard. Each digit of the clear text
PIN is inserted as one nibble (=halfbyte) into
lpbChipData. See
WFS_CMD_PIN_PRESENT_IDC for a
detailed description.

fwDisplay
Specifies the type of the display used in the PIN pad module as one of the following flags:

Value Meaning
WFS_PIN_DISPNONE No display unit.
WFS_PIN_DISPLEDTHROUGH Lights next to text guide user.
WFS_PIN_DISPDISPLAY A real display is available (this doesn’t apply

for self-service).

bIDConnect
Specifies whether the PIN pad is directly physically connected to the ID card unit. If the value is
TRUE, the PIN will be transported securely during the command
WFS_CMD_PIN_PRESENT_IDC.

fwIDKey
Specifies if key owner identification (in commands referenced as lpxIdent), which authorizes
access to the encryption module, is required. A zero value is returned if the encryption module
does not support this capability. Otherwise it will be a combination of the following flags:

Value Meaning
WFS_PIN_IDKEYINITIALIZATION ID key is returned by the

WFS_CMD_PIN_INITIALIZATION
command.

WFS_PIN_IDKEYIMPORT ID key is required as input for the
WFS_CMD_PIN_IMPORT_KEY and
WFS_CMD_PIN_DERIVE_KEY command.

fwValidationAlgorithms
Specifies the algorithms for PIN validation supported by the service; combination of the following
flags:

Value Meaning
WFS_PIN_DES DES algorithm.
WFS_PIN_EUROCHEQUE EUROCHEQUE algorithm.
WFS_PIN_VISA VISA algorithm.
WFS_PIN_DES_OFFSET DES offset generation algorithm.
WFS_PIN_BANKSYS Banksys algorithm.

fwKeyCheckModes
Specifies the key check modes that are supported to check the correctness of an imported key
value. The encryption algorithm used (i.e. DES, 3DES, AES) is determined by the type of key
being checked. If the key size is larger than the algorithm block size, then only the first block will
be used. It can be a combination of the following flags:

Value Meaning
WFS_PIN_KCVSELF The key check value (KCV) is created by an

encryption of the key with itself. For the
description refer to the
WFS_PIN_KCVSELF literal description in
dwCryptoMethod.

CWA 16926-6:2020 (E)

27

WFS_PIN_KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key.

lpszExtra
Points to a list of vendor-specific, or any other extended, information. The information is returned
as a series of “key=value” strings so that it is easily extendable by Service Providers. Each string
is null-terminated, the whole list terminated with an additional null character. An empty list may
be indicated by either a NULL pointer or a pointer to two consecutive null characters.

A number of lpszExtra key value pairs have been standardized during previous releases of the PIN
specification. These values have now been added to the main capabilities structure but the
standardized key value pairs in lpszExtra must still be supported by the Service Provider when the
functionality is supported. Section 10 defines the standardized lpszExtra key value pairs.

dwGuidLights [...]
Specifies which guidance lights are available. A number of guidance light types are defined
below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_PIN_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the
capability to show directional movement representing “entry” and “exit”. The “entry” state gives
the impression of leading a user to place a card into the device. The “exit” state gives the
impression of ejection from a device to a user and would be used for retrieving a card from the
device.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B), colors (type C) and directions (type D) that the guidance light
indicator is capable of handling. If the guidance light indicator does not support direction then no
value of type D is returned. A value of WFS_PIN_GUIDANCE_NOT_AVAILABLE indicates
that the device has no guidance light indicator or the device controls the light directly with no
application control possible.

Value Meaning Type
WFS_PIN_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.
WFS_PIN_GUIDANCE_OFF The light can be off. B
WFS_PIN_GUIDANCE_SLOW_FLASH The light can blink slowly. B
WFS_PIN_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.
WFS_PIN_GUIDANCE_QUICK_FLASH The light can blink quickly. B
WFS_PIN_GUIDANCE_CONTINUOUS The light can be continuous B

(steady).
WFS_PIN_GUIDANCE_RED The light can be red. C
WFS_PIN_GUIDANCE_GREEN The light can be green. C
WFS_PIN_GUIDANCE_YELLOW The light can be yellow. C
WFS_PIN_GUIDANCE_BLUE The light can be blue. C
WFS_PIN_GUIDANCE_CYAN The light can be cyan. C
WFS_PIN_GUIDANCE_MAGENTA The light can be magenta. C
WFS_PIN_GUIDANCE_WHITE The light can be white. C
WFS_PIN_GUIDANCE_ENTRY The light can be in the entry state. D
WFS_PIN_GUIDANCE_EXIT The light can be in the exit state. D

dwGuidLights [WFS_PIN_GUIDANCE_PINPAD]
Specifies whether the guidance light indicator on the PIN pad unit is available.

bPINCanPersistAfterUse
Specifies whether the device can retain the PIN after a PIN processing command, e.g.
WFS_CMD_PIN_GET_PINBLOCK, WFS_CMD_PIN_LOCAL_DES,
WFS_CMD_PIN_PRESENT_IDC, etc:

Value Meaning
TRUE Applications may request, through the

WFS_CMD_PIN_MAINTAIN_PIN
command, that the PIN continues to be held
within the device after use by a PIN
processing command.

CWA 16926-6:2015 (E)

28

FALSE The PIN will always be cleared by the
device after processing. The
WFS_CMD_PIN_MAINTAIN_PIN is not
supported.

fwAutoBeep
Specifies whether the PIN device will emit a key beep tone on key presses (of active keys or in-
active keys), and if so, which mode it supports. Specified as a combination of the following flags:

Value Meaning
WFS_PIN_BEEP_ACTIVE_AVAILABLE Automatic beep tone on active key key-press

is supported. If this flag is not set then
automatic beeping for active keys is not
supported.

WFS_PIN_BEEP_ACTIVE_SELECTABLE Automatic beeping for active keys can be
controlled (i.e. turned on and off) by the
application. If this flag is not set then
automatic beeping for active keys cannot be
controlled by an application.

WFS_PIN_BEEP_INACTIVE_AVAILABLE Automatic beep tone on in-active key key-
press is supported. If this flag is not set then
automatic beeping for in-active keys is not
supported.

WFS_PIN_BEEP_INACTIVE_SELECTABLE Automatic beeping for in-active keys can be
controlled (i.e. turned on and off) by the
application. If this flag is not set then
automatic beeping for in-active keys cannot
be controlled by an application.

lpsHSMVendor
Identifies the HSM Vendor. lpsHSMVendor is NULL when the HSM Vendor is unknown or the
HSM is not supported.

The following is a list of known vendors’ strings that lpsHSMVendor can contain for the support
of German HSMs:

“KRONE”

“ASCOM”

“IBM”

“NCR”

bHSMJournaling
Specifies whether the HSM supports journaling by the WFS_CMD_PIN_GET_JOURNAL
command. The value of this parameter is either TRUE or FALSE. TRUE means the HSM
supports journaling by WFS_CMD_GET_JOURNAL.

dwRSAAuthenticationScheme
Specifies which type(s) of Remote Key Loading/Authentication is supported as a combination of
the following flags:

Value Meaning
WFS_PIN_RSA_AUTH_2PARTY_SIG Two-party Signature based authentication.
WFS_PIN_RSA_AUTH_3PARTY_CERT Three-party Certificate based authentication.
WFS_PIN_RSA_AUTH_3PARTY_CERT_TR34

Three-party Certificate based authentication
described by X9 TR34-2012 [Ref. 42].

dwRSASignatureAlgorithm
Specifies which type(s) of RSA Signature Algorithm(s) is supported as a combination of the
following flags:

Value Meaning
WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 SSA_PKCS_V1_5 Signatures supported.
WFS_PIN_SIGN_RSASSA_PSS SSA_PSS Signatures supported.

CWA 16926-6:2020 (E)

29

dwRSACryptAlgorithm
Specifies which type(s) of RSA Encipherment Algorithm(s) is supported as a combination of the
following flags:

Value Meaning
WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 AES_PKCS_V1_5 algorithm supported.
WFS_PIN_CRYPT_RSAES_OAEP AES_OAEP algorithm supported.

dwRSAKeyCheckMode
Specifies which algorithm/method used to generate the public key check value/thumb print as a
combination of the following flags:

Value Meaning
WFS_PIN_RSA_KCV_SHA1 SHA-1 is supported as defined in Ref. 3.
WFS_PIN_RSA_KCV_SHA256 SHA-256 is supported as defined in ISO/IEC

10118-3:2004 [Ref. 40] and FIPS 180-2
[Ref. 41].

dwSignatureScheme
Specifies which capabilities are supported by the Signature scheme as a combination of the
following flags:

Value Meaning
WFS_PIN_SIG_GEN_RSA_KEY_PAIR Specifies if the Service Provider supports the

RSA Signature Scheme
WFS_CMD_PIN_GENERATE_RSA_KEY
_PAIR and
WFS_CMD_PIN_EXPORT_RSA_EPP_SIG
NED commands.

WFS_PIN_SIG_RANDOM_NUMBER Specifies if the Service Provider returns a
random number from the
WFS_CMD_PIN_START_KEY_EXCHAN
GE command within the RSA Signature
Scheme.

WFS_PIN_SIG_EXPORT_EPP_ID Specifies if the Service Provider supports
exporting the EPP Security Item within the
RSA Signature Scheme.

WFS_PIN_SIG_ENHANCED_RKL Specifies that the Service Provider supports
the Enhanced Signature Remote Key
Scheme. This scheme allows the customer to
manage their own public keys independently
of the Signature Issuer. When this mode is
supported then the key loaded signed with
the Signature Issuer key is the host root
public key PKROOT, rather than PKHOST. See
Section 8.1 for a full description.

lpwEMVImportSchemes
Identifies the supported EMV Import Scheme(s) as a zero terminated array of modes.
lpwEMVImportSchemes is set to NULL if the Import Scheme(s) are unknown or not supported.
Otherwise lpwEMVImportSchemes lists all Import Scheme(s) supported by the PIN Service
Provider from the following possible values:

Value Meaning
WFS_PIN_EMV_IMPORT_PLAIN_CA A plain text CA public key is imported with

no verification.
WFS_PIN_EMV_IMPORT_CHKSUM_CA A plain text CA public key is imported using

the EMV 2000 verification algorithm. See
[Ref. 4].

WFS_PIN_EMV_IMPORT_EPI_CA A CA public key is imported using the self-
sign scheme defined in the Europay
International, EPI CA Module Technical -
Interface specification Version 1.4, [Ref. 5].

WFS_PIN_EMV_IMPORT_ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, [Ref. 4].

CWA 16926-6:2015 (E)

30

WFS_PIN_EMV_IMPORT_ICC An ICC public key is imported as defined in
EMV 2000 Book II, [Ref. 4].

WFS_PIN_EMV_IMPORT_ICC_PIN An ICC PIN public key is imported as
defined in EMV 2000 Book II, [Ref. 4].

WFS_PIN_EMV_IMPORT_PKCSV1_5_CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

fwEMVHashAlgorithm
Specifies which hash algorithm is supported for the calculation of the HASH as a combination of
the following flags:

Value Meaning
WFS_PIN_HASH_SHA1_DIGEST The SHA 1 digest algorithm is supported by

the WFS_CMD_PIN_DIGEST command.
WFS_PIN_HASH_SHA256_DIGEST The SHA 256 digest algorithm, as defined in

ISO/IEC 10118-3:2004 [Ref. 40] and FIPS
180-2 [Ref. 41], is supported by the
WFS_CMD_PIN_DIGEST command.

bKeyImportThroughParts
Specifies whether the device is capable of importing keys in multiple parts. TRUE means the
device supports the key import in multiple parts.

fwENCIOProtocols
Specifies the ENC_IO protocols supported to communicate with the encryption module as a
combination of the following flags:

Value Meaning
WFS_PIN_ENC_PROT_CH For Swiss specific protocols. The document

specification for Swiss specific protocols is
"CMD_ENC_IO - CH Protocol.doc". This
document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management
Hertistrasse 27
CH-8304 Wallisellen

WFS_PIN_ENC_PROT_GIECB Protocol for “Groupement des Cartes
Bancaires” (France).

WFS_PIN_ENC_PROT_LUX Protocol for Luxemburg commands. The
reference for this specific protocol is the
Authorization Center in Luxemburg
(CETREL.)
Cryptography Management
Postal address:
CETREL Société Coopérative
Centre de Transferts Electroniques
L-2956 Luxembourg

WFS_PIN_ENC_PROT_CHN Protocol for China commands. The reference
for this specific protocol are the Financial
industry standard of the People’s Republic of
China PBOC3.0 JR/T 0025[Ref 44] and the
Password industry standard of the People's
Republic of China GM/T 0003, GM/T
004[Ref 43].

bTypeCombined
Specifies whether the keypad used in the secure PIN pad module is integrated within a generic
Win32 keyboard.

CWA 16926-6:2020 (E)

31

TRUE means the secure PIN keypad is integrated within a generic Win32 keyboard and standard
Win32 key events will be generated for any key when there is no ‘active’ GET_DATA or
GET_PIN command. Note that XFS continues to support defined PIN keys only, and is not
extended to support new alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both
PIN and generic keyboards.

• When an application wishes to receive XFS-based key information then it can use the
WFS_CMD_PIN_GET_DATA and WFS_CMD_PIN_GET_PIN commands.

• No Win32 keystrokes are generated for any key (active or not) in a combined device
when WFS_CMD_PIN_GET_DATA or WFS_CMD_PIN_GET_PIN are ‘active’.

• When no WFS_CMD_PIN_GET_DATA or WFS_CMD_PIN_GET_PIN command is
‘active’ then any key press will result in a Win32 key event. These events can be ignored
by the application, if required.

Note that this does not compromise secure PIN entry – there will be no Win32 keyboard events
during PIN collection.

On terminals and kiosks with separate PIN and Win32 keyboards, the Win32 keyboard behaves
purely as a PC keyboard and the PIN device behaves only as an XFS device.

bSetPinblockDataRequired
Specifies whether the command WFS_CMD_PIN_SET_PINBLOCK_DATA must be called
before the PIN is entered via WFS_CMD_PIN_GET_PIN and retrieved via
WFS_CMD_PIN_GET_PINBLOCK.

fwKeyBlockImportFormats
Supported key block formats; a combination of the following flags:

Value Meaning
WFS_PIN_ANSTR31KEYBLOCK Supports ANS TR-31A Keyblock format key

import.
WFS_PIN_ANSTR31KEYBLOCKB Supports ANS TR-31B Keyblock format key

import.
WFS_PIN_ANSTR31KEYBLOCKC Supports ANS TR-31C Keyblock format key

import.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

wDESKeyLength
Specifies which length(s) of DES keys are supported as a combination of the following flags:

Value Meaning
WFS_PIN_KEYSINGLE 8 byte (single-length) DES keys are

supported.
WFS_PIN_KEYDOUBLE 16 byte (double-length) DES keys are

supported.
WFS_PIN_KEYTRIPLE 24 byte (triple-length) DES keys are

supported.

wCertificateTypes
Specifies supported certificate types as a combination of the following flags:

Value Meaning
WFS_PIN_PUBLICENCKEY Supports the EPP public encryption

certificate.
WFS_PIN_PUBLICVERIFICATIONKEY Supports the EPP public verification

certificate.
WFS_PIN_PUBLICHOSTKEY Supports the Host public certificate.

CWA 16926-6:2015 (E)

32

lppLoadCertOptions
A NULL-terminated array of pointers to WFSPINSIGNERCAP structures specifying the options
supported by the WFS_CMD_PIN_LOAD_CERTIFICATE_EX command.

typedef struct _wfs_pin_signer_cap
{
 DWORD dwSigner;
 DWORD dwOption;
} WFSPINSIGNERCAP, *LPWFSPINSIGNERCAP;

There is one structure for each signer that is supported by the Service Provider. In each structure,
there will be a dwSigner parameter with one bit set to indicate which signer the structure is
referencing, and there will be a dwOption parameter with one or more bits set to indicate all of the
options that the Service Provider supports with the signer specified by dwSigner.

dwSigner
Specifies the signers supported by the WFS_CMD_PIN_LOAD_CERTIFICATE_EX
command as one of the following flags:

Value Meaning
WFS_PIN_SIGNER_CERTHOST The current Host RSA Private Key is

used to sign the token.
WFS_PIN_SIGNER_SIGHOST The current Host RSA Private Key is

used to sign the token, signature format is
used.

WFS_PIN_SIGNER_CA The Certificate Authority RSA Private
Key is used to sign the token.

WFS_PIN_SIGNER_HL A Higher-Level Authority RSA Private
Key is used to sign the token.

WFS_PIN_SIGNER_TR34 This value can only be specified in
combination with the
WFS_PIN_SIGNER_CERTHOST,
WFS_PIN_SIGNER_CA or
WFS_PIN_SIGNER_HL flags. It
indicates that the values combined with it
are compliant with X9 TR34-2012 [Ref.
42].

dwOption
Specifies the load options supported by the WFS_CMD_PIN_LOAD_CERTIFICATE_EX
command as a combination of the following flags:

Value Meaning
WFS_PIN_LOAD_NEWHOST Load a new Host certificate, where one

has not already been loaded.
WFS_PIN_LOAD_REPLACEHOST Replace (or rebind) the EPP to a new

Host certificate, where the new Host
certificate is signed by dwSigner.

dwCRKLLoadOptions
Supported options to load the Key Transport Key using the Certificate Remote Key Loading
protocol; a combination of the following flags:

Value Meaning
WFS_PIN_CRKLLOAD_NORANDOM Import a Key Transport Key without

generating and using a random number.
WFS_PIN_CRKLLOAD_NORANDOM_CRL Import a Key Transport Key with a

Certificate Revocation List appended to the
input message. A random number is not
generated nor used.

WFS_PIN_CRKLLOAD_RANDOM Import a Key Transport Key by generating
and using a random number.

CWA 16926-6:2020 (E)

33

WFS_PIN_CRKLLOAD_RANDOM_CRL Import a Key Transport Key with a
Certificate Revocation List appended to the
input parameter. A random number is
generated and used.

lpETSCaps
Specifies the capabilities of the ETS device. This value is NULL if the fwType does not contain
WFS_PIN_TYPEETS.

typedef struct _wfs_pin_ets_location_cap
 {
 LONG lXPos;
 LONG lYPos;
 USHORT usXSize;
 USHORT usYSize;
 WORD wMaximumTouchFrames;
 WORD wMaximumTouchKeys;
 WORD wFloatFlags;
 } WFSPINETSCAPS, *LPWFSPINETSCAPS;

lXpos
Specifies the position of the left edge of the ETS in Windows virtual screen coordinates. This
value may be negative because the of the monitor position on the virtual desktop – see section
2.1.

lYPos
Specifies the position of the top edge of the ETS in Windows virtual screen coordinates. This
value may be negative because the of the monitor position on the virtual desktop – see section
2.1.

usXSize
Specifies the width of the ETS in Windows virtual screen coordinates.

usYSize
Specifies the height of the ETS in Windows virtual screen coordinates.

wMaximumTouchFrames
Specifies the maximum number of Touch Frames that the device can support in a touch
keyboard definition.

wMaximumTouchKeys
Specifies the maximum number of Touch Keys that the device can support within any Touch
Frame.

wFloatFlags
Specifies if the device can float the touch keyboards. WFS_PIN_FLOAT_NONE if the PIN
device cannot randomly shift the layout or else a combination of the following flags:

Value Meaning
WFS_PIN_FLOATX Specifies that the PIN device will randomly

shift the layout in a horizontal direction.
WFS_PIN_FLOATY Specifies that the PIN device will randomly

shift the layout in a vertical direction.

lpdwSynchronizableCommands
Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can
be synchronized. If no execute command can be synchronized then this parameter will be NULL.

lppRestrictedKeyEncKeySupport
A NULL-terminated array of pointers to WFSPINRESTKEYENCKEY structures specifying the
loading methods that support the WFS_PIN_USERESTRICTEDKEYENCKEY usage flag and
the allowable usage flag combinations for each of those loading methods..

typedef struct _wfs_pin_rest_keyenckey
 {
 DWORD dwLoadingMethod;
 DWORD dwUses;
 } WFSPINRESTKEYENCKEY, *LPWFSPINRESTKEYENCKEY;

CWA 16926-6:2015 (E)

34

There is one structure for each loading method that is supported by the Service Provider.
Loading methods that are not supported are not included in the NULL-terminated array of
pointers. If none of the loading methods are supported, then lppRestrictedKeyEncKeySupport
is NULL. In each structure, there will be a dwLoadingMethod parameter with one bit set to
indicate which loading method the structure is referencing, and a dwUses parameter with one
or more bits set to indicate all of the usage flags that can be combined with the
WFS_PIN_USERESTRICTEDKEYENCKEY flag that the Service Provider supports with the
loading method specified by dwLoadingMethod.

dwLoadingMethod
Specifies the loading methods supported as one of the following flags:

Value Meaning
WFS_PIN_RSA_AUTH_2PARTY_SIG Two-party Signature based.
WFS_PIN_RSA_AUTH_3PARTY_CERT Three-party Certificate based.
WFS_PIN_RSA_AUTH_3PARTY_CERT_TR34 Three-party Certificate based.
WFS_PIN_RESTRICTED_SECUREKEYENTRY Restricted secure key entry.

dwUses
Specifies one or more usage flags that can be used in combination with the
WFS_PIN_USERESTRICTEDKEYENCKEY usage flag.

Value Meaning
WFS_PIN_USECRYPT Key is used for encryption and

decryption.
WFS_PIN_USEFUNCTION Key is used for PIN block creation.
WFS_PIN_USEMACING Key is used for MACing.
WFS_PIN_USEPINLOCAL Key is used only for local PIN check.
WFS_PIN_USESVENCKEY Key is used as CBC Start Value

encryption key.
WFS_PIN_USEPINREMOTE Key is used only for PIN block creation.

dwSymmetricKeyManagementMethods
Specifies the symmetric key management modes as combination of the following flags:

Value Meaning
WFS_PIN_KM_FIXED_KEY This method of key management uses fixed

keys for transaction processing.
WFS_PIN_KM_MASTER_KEY This method uses a hierarchy of Key

Encrypting Keys and Transaction Keys. The
highest level of Key Encrypting Key is
known as a Master Key. Transaction Keys
are distributed and replaced encrypted under
a Key Encrypting Key.

WFS_PIN_KM_TDES_DUKPT This method uses TDES Derived Unique
Key Per Transaction (see reference 45).

lppCryptAttributes
This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the
WFS_CMD_PIN_CRYPT_340 command.

typedef struct _wfs_pin_attributes
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 DWORD dwCryptoMethod;
} WFSPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider.
In each structure, each of the four parameters will have only one value set.

bKeyUsage
Specifies the key usages supported by the WFS_CMD_PIN_CRYPT_340 command as one of
the following values:

CWA 16926-6:2020 (E)

35

Value Meaning
‘D0’ Symmetric data encryption.
‘D1’ Asymmetric data encryption.
‘M0’ ISO 16609 MAC Algorithm 1 (using

TDEA).
‘M1’ ISO 9797-1 MAC Algorithm 1.
‘M2’ ISO 9797-1 MAC Algorithm 2.
‘M3’ ISO 9797-1 MAC Algorithm 3.
‘M4’ ISO 9797-1 MAC Algorithm 4.
‘M5’ ISO 9797-1:1999 MAC Algorithm 5.
‘M6’ ISO 9797-1:2011 MAC Algorithm

5/CMAC.
‘M7’ HMAC.
‘M8’ ISO 9797-1:2011 MAC Algorithm 6.
‘S0’ Asymmetric key pair for digital

signature.
‘S1’ Asymmetric key pair, CA.
‘S2’ Asymmetric key pair, nonX9.24 key.

bAlgorithm
Specifies the encryption algorithms supported by the WFS_CMD_PIN_CRYPT_340
command as one of the following values:

Value Meaning
‘A’ AES.
‘D’ DEA.
‘R’ RSA.
‘T’ Triple DEA (also referred to as TDEA).

bModeOfUse
Specifies the encryption modes supported by the WFS_CMD_PIN_CRYPT_340 command as
one of the following values:

Value Meaning
‘D’ Decrypt.
‘E’ Encrypt.
‘G’ Generate.
‘S’ Signature.
‘V’ Verify.

dwCryptoMethod
Specifies the cryptographic methods supported by the WFS_CMD_PIN_CRYPT_340
command.

For symmetric encryption methods (bKeyUsage is ‘D0’), this can be one of the following
values:

Value Meaning
WFS_PIN_CRYPTOECB The ECB encryption method.
WFS_PIN_CRYPTOCBC The CBC encryption method.
WFS_PIN_CRYPTOCFB The CFB encryption method.
WFS_PIN_CRYPTOOFB The OFB encryption method.
WFS_PIN_CRYPTOCTR The CTR method defined in NIST

SP800-38A.
WFS_PIN_CRYPTOXTS The XTS method defined in NIST

SP800-38E.

For asymmetric encryption methods (bKeyUsage is ‘D1’), this can be one of the following
values:

Value Meaning
WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 Use the RSAES_PKCS1-v1.5 algorithm.
WFS_PIN_CRYPT_RSAES_OAEP Use the RSAES OAEP algorithm.

For asymmetric signature verification methods (bKeyUsage is ‘S0’, ‘S1’, or ‘S2’), this can be
one of the following values:

CWA 16926-6:2015 (E)

36

Value Meaning
WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 Use the RSASSA-PKCS1-v1.5

algorithm.
WFS_PIN_SIGN_RSASSA_PSS Use the RSASSA-PSS algorithm.

One or more of the following flags must be specified in combination with one of the signature
verification methods.

Value Meaning
WFS_PIN_SIGNHASH_SHA1 The SHA 1 digest algorithm.
WFS_PIN_SIGNHASH_SHA256 The SHA 256 digest algorithm, as

defined in ISO/IEC 10118-3:2004 [Ref.
40] and FIPS 180-2 [Ref. 41]

If bKeyUsage is specified as any of the MAC usages (i.e. ‘M1’), then this should be set to 0.

lppPINBlockAttributes
This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the
WFS_CMD_PIN_GET_PINBLOCK_340 command.

typedef struct _wfs_pin_attributes
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 DWORD dwCryptoMethod;
} WFSPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each

bKeyUsage
Specifies the key usages supported by the WFS_CMD_PIN_GET_PINBLOCK_340
command as one of the following values:

Value Meaning
‘P0’ PIN Encryption.

bAlgorithm
Specifies the encryption algorithms supported by the
WFS_CMD_PIN_GET_PINBLOCK_340 command as one of the following values:

Value Meaning
‘A’ AES.
‘D’ DEA.
‘R’ RSA.
‘T’ Triple DEA (also referred to as TDEA).

bModeOfUse
Specifies the encryption modes supported by the WFS_CMD_PIN_GET_PINBLOCK_340
command as one of the following values:

Value Meaning
‘E’ Encrypt.

dwCryptoMethod
This parameter specifies the cryptographic method that will be used with the encryption
algorithm specified by bAlgorithm.

If bAlgorithm is ‘A’, ‘D’, or ‘T’, then dwCryptoMethod can be one of the following values:

Value Meaning
WFS_PIN_CRYPTOECB The ECB encryption method.
WFS_PIN_CRYPTOCBC The CBC encryption method.
WFS_PIN_CRYPTOCFB The CFB encryption method.
WFS_PIN_CRYPTOOFB The OFB encryption method.
WFS_PIN_CRYPTOCTR The CTR method defined in NIST

SP800-38A.

CWA 16926-6:2020 (E)

37

WFS_PIN_CRYPTOXTS The XTS method defined in NIST
SP800-38E.

If bAlgorithm is ‘R’, then dwCryptoMethod can be one of the following values:

Value Meaning
WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 Use the RSAES_PKCS1-v1.5 algorithm.
WFS_PIN_CRYPT_RSAES_OAEP Use the RSAES OAEP algorithm.

lppKeyAttributes
This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the WFS_CMD_PIN_IMPORT_
KEY_340 command for the key to be loaded.

typedef struct _wfs_pin_attributes
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 DWORD dwCryptoMethod;
} WFSPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each.

bKeyUsage
Specifies the key usages supported by the WFS_CMD_PIN_IMPORT_ KEY_340 command
as one of the following values:

Value Meaning
‘B0’ BDK Base Derivation Key.
‘B1’ Initial DUKPT Key.
‘B2’ Base Key Variant Key.
‘C0’ CVK Card Verification Key.
‘D0’ Symmetric Key for Data Encryption.
‘D1’ Asymmetric Key for Data Encryption.
‘D2’ Data Encryption Key for Decimalization

Table.
‘E0’ EMV/chip Issuer Master Key:

Application Cryptograms.
‘E1’ EMV/chip Issuer Master Key: Secure

Messaging for Confidentiality.
‘E2’ EMV/chip Issuer Master Key: Secure

Messaging for Integrity.
‘E3’ EMV/chip Issuer Master Key: Data

Authentication Code.
‘E4’ EMV/chip Issuer Master Key: Dynamic.
‘E5’ EMV/chip Issuer Master Key: Card

Personalization.
‘E6’ EMV/chip Issuer Master Key: Other.
‘I0’ Initialization Vector (IV).
‘K0’ Key Encryption or wrapping.
‘K1’ TR-31 Key Block Protection Key.
‘K2’ TR-34 Asymmetric Key.
‘K3’ Asymmetric key for key agreement/key

wrapping.
‘M0’ ISO 16609 MAC Algorithm 1 (using

TDEA).
‘M1’ ISO 9797-1 MAC Algorithm 1.
‘M2’ ISO 9797-1 MAC Algorithm 2.
‘M3’ ISO 9797-1 MAC Algorithm 3.
‘M4’ ISO 9797-1 MAC Algorithm 4.
‘M5’ ISO 9797-1:1999 MAC Algorithm 5.
‘M6’ ISO 9797-1:2011 MAC Algorithm

5/CMAC.
‘M7’ HMAC.

CWA 16926-6:2015 (E)

38

‘M8’ ISO9797-1:2011 MAC Algorithm 6.
‘P0’ PIN Encryption.
‘S0’ Asymmetric key pair for digital

signature.
‘S1’ Asymmetric key pair, CA key.
‘S2’ Asymmetric key pair, nonX9.24 key.
‘V0’ PIN verification, KPV, other algorithm.
‘V1’ PIN verification, IBM 3624.
‘V2’ PIN verification, VISA PVV.
‘V3’ PIN verification, X9-132 algorithm 1.
‘V4’ PIN verification, X9-132 algorithm 2.
‘0B’ Restricted Key Encryption Key that can

only be used to load DUKPT keys.
‘0C’ Restricted Key Encryption Key that can

only be used to load CVKs.
‘0D’ Restricted Key Encryption Key that can

only be used to load data encryption
keys.

‘0E’ Restricted Key Encryption Key that can
only be used to load EMV keys.

‘0I’ Restricted Key Encryption Key that can
only be used to load Initialization
Vectors.

‘0K’ Restricted Key Encryption Key that can
only be used to load keys that can load
other keys.

‘0M’ Restricted Key Encryption Key that can
only be used to load MAC keys.

‘0P’ Restricted Key Encryption Key that can
only be used to load PIN encryption
keys.

‘0S’ Restricted Key Encryption Key that can
only be used to load asymmetric key
pairs.

‘0V’ Restricted Key Encryption Key that can
only be used to load PIN verification
keys.

‘1B’ Restricted Keyblock Protection Key that
can only be used to load DUKPT keys.

‘1C’ Restricted Key Keyblock Protection Key
that can only be used to load CVKs.

‘1D’ Restricted Keyblock Protection Key that
can only be used to load data encryption
keys.

‘1E’ Restricted Keyblock Protection Key that
can only be used to load EMV keys.

‘1I’ Restricted Keyblock Protection Key that
can only be used to load Initialization
Vectors.

‘1K’ Restricted Keyblock Protection Key that
can only be used to load keys that can
load other keys.

‘1M’ Restricted Keyblock Protection Key that
can only be used to load MAC keys.

‘1P’ Restricted Keyblock Protection Key that
can only be used to load PIN encryption
keys.

‘1S’ Restricted Keyblock Protection Key that
can only be used to load asymmetric key
pairs.

CWA 16926-6:2020 (E)

39

‘1V’ Restricted Keyblock Protection Key that
can only be used to load PIN verification
keys.

Other numeric values Reserved for proprietary use.

bAlgorithm
Specifies the encryption algorithms supported by the WFS_CMD_PIN_IMPORT_ KEY_340
command as one of the following values:

Value Meaning
‘A’ AES.
‘D’ DEA.
‘R’ RSA.
‘T’ Triple DEA (also referred to as TDEA).
Numeric values Reserved for proprietary use.

bModeOfUse
Specifies the encryption modes supported by the WFS_CMD_PIN_IMPORT_ KEY_340
command as one of the following values:

Value Meaning
‘B’ Both Encrypt and Decrypt / Wrap and

Unwrap.
‘C’ Both Generate and Verify.
‘D’ Decrypt / Unwrap Only.
‘E’ Encrypt / Wrap Only.
‘G’ Generate Only.
‘S’ Signature Only.
‘T’ Both Sign and Decrypt.
‘V’ Verify Only.
‘X’ Key used to derive other key(s).
‘Y’ Key used to create key variants.
Numeric values Reserved for proprietary use.

dwCryptoMethod
Specifies the cryptographic methods supported by the WFS_CMD_PIN_IMPORT_ KEY_340
command. For lpKeyAttributes, this parameter is 0, because the key being imported is not
being used yet to perform a cryptographic method.

lppDecryptAttributes
This will either be NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the WFS_CMD_PIN_IMPORT_
KEY_340 command for the key used to decrypt or unwrap the key being imported.

typedef struct _wfs_pin_attributes
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 DWORD dwCryptoMethod;
} WFSPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each.

bKeyUsage
This parameter is not used and must be set to “00”. The Service Provider can determine this
value from the decryption key that is already imported into the PIN device.

bAlgorithm
Specifies the encryption algorithms supported by the WFS_CMD_PIN_ IMPORT_ KEY_340
command as one of the following flags:

Value Meaning
‘A’ AES.
‘D’ DEA.
‘R’ RSA.
‘T’ Triple DEA (also referred to as TDEA).

CWA 16926-6:2015 (E)

40

Numeric values Reserved for proprietary use.

bModeOfUse
This parameter is not used and must be set to ‘0’. The Service Provider can determine this
value from the decryption key that is already imported into the PIN device.

dwCryptoMethod
This parameter specifies the cryptographic method that will be used with the encryption
algorithm specified by bAlgorithm.

If bAlgorithm is ‘A’, ‘D’, or ‘T’, then dwCryptoMethod can be one of the following values:

Value Meaning
WFS_PIN_CRYPTOECB The ECB encryption method
WFS_PIN_CRYPTOCBC The CBC encryption method
WFS_PIN_CRYPTOCFB The CFB encryption method
WFS_PIN_CRYPTOOFB The OFB encryption method
WFS_PIN_CRYPTOCTR The CTR method defined in NIST

SP800-38A.
WFS_PIN_CRYPTOXTS The XTS method defined in NIST

SP800-38E.

If bAlgorithm is ‘R’, then dwCryptoMethod can be one of the following values:
Value Meaning
WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 Use the RSAES_PKCS1-v1.5 algorithm.
WFS_PIN_CRYPT_RSAES_OAEP Use the RSAES_OAEP algorithm.

If bKeyUsage is ‘K1’, then dwCryptoMethod is 0. TR-31 defines the cryptographic methods
used for each key block version.

lppVerifyAttributes
This is either NULL, or a NULL-terminated array of pointers to WFSPINATTRIBUTES
structures specifying the combination of attributes supported by the WFS_CMD_PIN_ IMPORT_
KEY_340 command for the key used for verification before importing the key.

typedef struct _wfs_pin_attributes
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 DWORD dwCryptoMethod;
} WFSPINATTRIBUTES, *LPWFSPINATTRIBUTES;

There is one structure for each attribute combination that is supported by the Service Provider. In
each structure, each of the four parameters will have only one value set in each.

bKeyUsage
Specifies the key usages supported by the WFS_CMD_PIN_ IMPORT_ KEY_340 command
as one of the following values:

Value Meaning
‘M0’ ISO 16609 MAC Algorithm 1 (using

TDEA).
‘M1’ ISO 9797-1 MAC Algorithm 1.
‘M2’ ISO 9797-1 MAC Algorithm 2.
‘M3’ ISO 9797-1 MAC Algorithm 3.
‘M4’ ISO 9797-1 MAC Algorithm 4.
‘M5’ ISO 9797-1:1999 MAC Algorithm 5.
‘M6’ ISO 9797-1:2011 MAC Algorithm

5/CMAC.
‘M7’ HMAC.
‘M8’ ISO9797-1:2011 MAC Algorithm 6.
‘S0’ Asymmetric key pair for digital

signature.
‘S1’ Asymmetric key pair, CA key.
‘S2’ Asymmetric key pair, nonX9.24 key.

CWA 16926-6:2020 (E)

41

Numeric values Reserved for proprietary use. A key check value does not have a usage,
so the bKeyUsage should be ‘00’ when specifying a key check value.

bAlgorithm
Specifies the encryption algorithms supported by the WFS_CMD_PIN_ IMPORT_ KEY_340
command as one of the following values:

Value Meaning
‘A’ AES
‘D’ DEA
‘R’ RSA
‘T’ Triple DEA (also referred to as TDEA)
Numeric values Reserved for proprietary use

bModeOfUse
Specifies the encryption modes supported by the WFS_CMD_PIN_ IMPORT_ KEY_340
command as one of the following values:

Value Meaning
‘V’ Verify Only
Numeric values Reserved for proprietary use

dwCryptoMethod
This parameter specifies the cryptographic method that will be used with the encryption
algorithm specified by bAlgorithm.

If bAlgorithm is ‘A’, ‘D’, or ‘T’ and bKeyUsage is a MAC usage (i.e. ‘M1’), then
dwCryptoMethod must be 0.

If bAlgorithm is ‘A’, ‘D’, or ‘T’ and bKeyUsage is ’00’, then dwCryptoMethod can be one of
the following values:

Value Meaning
WFS_PIN_KCVNONE There is no key check value verification

required.
WFS_PIN_KCVSELF The key check value (KCV) is created by

an encryption of the key with itself.
WFS_PIN_KCVZERO The key check value (KCV) is created by

encrypting a zero value with the key.

If bAlgorithm is ‘R’ and bKeyUsage is not ‘00’, then dwCryptoMethod can be one of the
following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm specified. No

signature verification will take place and
the content of lpxVerificationData must
be NULL.

WFS_PIN_CRYPT_RSASSA_PKCS1_V1_5 Use the RSASSA-PKCS1-v1.5
algorithm.

WFS_PIN_CRYPT_RSASSA_PSS Use the RSASSA-PSS algorithm.

One or more of the following flags must be specified in combination with one of the signature
verification methods.

Value Meaning
WFS_PIN_SIGNHASH_SHA1 The SHA 1 digest algorithm.
WFS_PIN_SIGNHASH_SHA256 The SHA 256 digest algorithm, as

defined in ISO/IEC 10118-3:2004 [Ref.
40] and FIPS 180-2 [Ref. 41].

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

CWA 16926-6:2015 (E)

42

4.3 WFS_INF_PIN_KEY_DETAIL

Description This command returns detailed information about the keys in the encryption module. This
command will also return information on symmetric keys loaded during manufacture that can be
used by applications. If a public or private key name is specified this command will return
WFS_ERR_PIN_KEYNOTFOUND. If the application wants all keys returned, then all keys
except the public and private keys are returned.

Details relating to the keys loaded using OPT (via the ZKA WFS_PIN_PROTISOPS protocol) are
retrieved using the ZKA WFS_PIN_PROTHSMLDI protocol. These keys are not reported by this
command. Applications should use WFS_INF_PIN_KEY_DETAIL_340.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAIL *lppKeyDetail;

Pointer to a NULL-terminated array of pointers to WFSPINKEYDETAIL structures.
typedef struct _wfs_pin_key_detail
 {
 LPSTR lpsKeyName;
 WORD fwUse;
 BOOL bLoaded;
 LPWFSXDATA lpxKeyBlockHeader;
 } WFSPINKEYDETAIL, *LPWFSPINKEYDETAIL;

lpsKeyName
Specifies the name of the key.

fwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key can be used for encryption/decryption.
WFS_PIN_USEFUNCTION Key can be used for PIN functions.
WFS_PIN_USEMACING Key can be used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USENODUPLICATE Key can be imported only once.
WFS_PIN_USESVENCKEY Key is used as CBC Start Value encryption

key.
WFS_PIN_USECONSTRUCT Key is under construction through the import

of multiple parts. This value can be returned
in combination with any of the other key
usage flags (other than
WFS_PIN_USESECURECONSTRUCT).

WFS_PIN_USESECURECONSTRUCT Key is under construction through the import
of multiple parts from a secure encryption
key entry buffer. This value can be returned
in combination with any of the other key
usage flags (other than
WFS_PIN_USECONSTRUCT).

WFS_PIN_USEANSTR31MASTER Key is an ANS X9 TR-31 key block master
key (see reference 35).

CWA 16926-6:2020 (E)

43

WFS_PIN_USERESTRICTEDKEYENCKEY Key is used as
WFS_PIN_USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN_USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator).

lpxKeyBlockHeader
Contains the key block header of keys imported within an ANS TR-31 key block. This data is
encoded in the same format that it was imported in, and contains all mandatory and optional
header fields. lpxKeyBlockHeader is NULL if the key was not imported within a key block or has
not been loaded yet. The fwUse field provides an accurate summary of the key use, but the use
defined within the key block header is more precise. See the TR-31 Key Use Appendix for
additional detail.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments None.

CWA 16926-6:2015 (E)

44

4.4 WFS_INF_PIN_FUNCKEY_DETAIL

Description This command returns information about the names of the Function Keys supported by the device.
Location information is also returned for the supported FDKs (Function Descriptor Keys). This
includes screen overlay FDKs.

This command should be issued before the first call to WFS_CMD_PIN_GET_PIN or
WFS_CMD_PIN_GET_DATA to determine which Function Keys (FKs) and Function Descriptor
Keys (FDKs) are available and where the FDKs are located. Then, in these two commands, they
can then be specified as Active and Terminate keys and options on the customer screen can be
aligned with the active FDKs.

Note: As this command can only return FDK positions, its use on ETS devices (see
WFSPINCAPS fwType) is limited. Therefore, for maximum compatibility, it is recommended that
the WFS_INF_PIN_GET_LAYOUT command be used in preference to this command.

Input Param LPULONG lpulFDKMask;

lpulFDKMask
Mask for the FDKs for which additional information is requested.
If 0x00000000, only information about function keys is returned.
If 0xFFFFFFFF, information about all the supported FDKs is returned.

Output Param LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;
typedef struct _wfs_pin_func_key_detail
 {
 ULONG ulFuncMask;
 USHORT usNumberFDKs;
 LPWFSPINFDK *lppFDKs;
 } WFSPINFUNCKEYDETAIL, *LPWFSPINFUNCKEYDETAIL;

ulFuncMask
Specifies the function keys available for this physical device as a combination of the following
flags. The defines WFS_PIN_FK_0 through WFS_PIN_FK_9 correspond to numeric digits:

WFS_PIN_FK_0 (numeric digit 0)
WFS_PIN_FK_1 (numeric digit 1)
WFS_PIN_FK_2 (numeric digit 2)
WFS_PIN_FK_3 (numeric digit 3)
WFS_PIN_FK_4 (numeric digit 4)
WFS_PIN_FK_5 (numeric digit 5)
WFS_PIN_FK_6 (numeric digit 6)
WFS_PIN_FK_7 (numeric digit 7)
WFS_PIN_FK_8 (numeric digit 8)
WFS_PIN_FK_9 (numeric digit 9)
WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE
WFS_PIN_FK_HELP
WFS_PIN_FK_DECPOINT
WFS_PIN_FK_00
WFS_PIN_FK_000
WFS_PIN_FK_RES1 (reserved for future use)
WFS_PIN_FK_RES2 (reserved for future use)
WFS_PIN_FK_RES3 (reserved for future use)
WFS_PIN_FK_RES4 (reserved for future use)
WFS_PIN_FK_RES5 (reserved for future use)
WFS_PIN_FK_RES6 (reserved for future use)
WFS_PIN_FK_RES7 (reserved for future use)
WFS_PIN_FK_RES8 (reserved for future use)

The remaining 6 bit masks may be used as vendor dependent keys.
WFS_PIN_FK_OEM1
WFS_PIN_FK_OEM2
WFS_PIN_FK_OEM3

CWA 16926-6:2020 (E)

45

WFS_PIN_FK_OEM4
WFS_PIN_FK_OEM5
WFS_PIN_FK_OEM6

usNumberFDKs
This value indicates the number of FDK structures returned. Only supported FDKs are returned.

lppFDKs
Pointer to an array of pointers to WFSPINFDK structures. It is the responsibility of the
application to identify the mapping between the FDK code and the physical location of the FDK.
lppFDKs is NULL if no FDKs are requested or supported.

typedef struct _wfs_pin_fdk
 {
 ULONG ulFDK;
 USHORT usXPosition;
 USHORT usYPosition;
 } WFSPINFDK, *LPWFSPINFDK;

ulFDK
Specifies the code returned by this FDK, defined as one of the following values:

WFS_PIN_FK_FDK01
WFS_PIN_FK_FDK02
WFS_PIN_FK_FDK03
WFS_PIN_FK_FDK04
WFS_PIN_FK_FDK05
WFS_PIN_FK_FDK06
WFS_PIN_FK_FDK07
WFS_PIN_FK_FDK08
WFS_PIN_FK_FDK09
WFS_PIN_FK_FDK10
WFS_PIN_FK_FDK11
WFS_PIN_FK_FDK12
WFS_PIN_FK_FDK13
WFS_PIN_FK_FDK14
WFS_PIN_FK_FDK15
WFS_PIN_FK_FDK16
WFS_PIN_FK_FDK17
WFS_PIN_FK_FDK18
WFS_PIN_FK_FDK19
WFS_PIN_FK_FDK20
WFS_PIN_FK_FDK21
WFS_PIN_FK_FDK22
WFS_PIN_FK_FDK23
WFS_PIN_FK_FDK24
WFS_PIN_FK_FDK25
WFS_PIN_FK_FDK26
WFS_PIN_FK_FDK27
WFS_PIN_FK_FDK28
WFS_PIN_FK_FDK29
WFS_PIN_FK_FDK30
WFS_PIN_FK_FDK31
WFS_PIN_FK_FDK32

usXPosition
For FDKs, specifies the screen position the FDK relates to. This position is relative to the Left
Hand side of the screen expressed as a percentage of the width of the screen.
For FDKs along the side of the screen this will be 0 (left side) or 100 (right side, user’s view).

usYPosition
For FDKs, specifies the screen position the FDK relates to. This position is relative to the top
of the screen expressed as a percentage of the height of the screen.
For FDKs above or below the screen this will be 0 (above) or 100 (below).

CWA 16926-6:2015 (E)

46

Diagram: Shows how usXPosition and usYPosition are set.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

FDK outside the
screen.
usXPosition = 0

15% of height of screen.
usYPostion = 15

Centre position
of FDK

CWA 16926-6:2020 (E)

47

4.5 WFS_INF_PIN_HSM_TDATA

Description This function returns the current HSM terminal data. The data is returned as a series of
“tag/length/value” items.

Input Param None.

Output Param LPWFSXDATA lpxTData;

lpxTData
Contains the parameter settings as a series of “tag/length/value” items with no separators. See
command WFS_CMD_PIN_HSM_SET_TDATA for the tags supported.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-6:2015 (E)

48

4.6 WFS_INF_PIN_KEY_DETAIL_EX

Description This command returns extended detailed information about the keys in the encryption module,
including DES, DUKPT, private and public keys. This command will also return information on
all keys loaded during manufacture that can be used by applications.

Details relating to the keys loaded using OPT (via the ZKA WFS_PIN_PROTISOPS protocol) are
retrieved using the ZKA WFS_PIN_PROTHSMLDI protocol. These keys are not reported by this
command. Applications should use WFS_INF_PIN_KEY_DETAIL_340.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAILEX *lppKeyDetailEx;

Pointer to a null-terminated array of pointers to WFSPINKEYDETAILEX structures.
typedef struct _wfs_pin_key_detail_ex
 {
 LPSTR lpsKeyName;
 DWORD dwUse;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 BOOL bLoaded;
 LPWFSXDATA lpxKeyBlockHeader;
 } WFSPINKEYDETAILEX, *LPWFSPINKEYDETAILEX;

lpsKeyName
Specifies the name of the key.

dwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key can be used for encryption/decryption.
WFS_PIN_USEFUNCTION Key can be used for PIN functions.
WFS_PIN_USEMACING Key can be used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USENODUPLICATE Key can be imported only once.
WFS_PIN_USESVENCKEY Key is used as CBC Start Value encryption

key.
WFS_PIN_USEPINLOCAL Key is used only for local PIN check.
WFS_PIN_USERSAPUBLIC Key is used as a public key for RSA

encryption including EMV PIN block
creation.

WFS_PIN_USERSAPRIVATE Key is used as a private key for RSA
decryption.

WFS_PIN_USERSAPRIVATESIGN Key is used as a private key for RSA
Signature generation. Only data generated
within the device can be signed.

WFS_PIN_USECHIPINFO Key is used as KGKINFO key (only ZKA
standard).

WFS_PIN_USECHIPPIN Key is used as KGKPIN key (only ZKA
standard).

WFS_PIN_USECHIPPS Key is used as KPS key (only ZKA standard).
WFS_PIN_USECHIPMAC Key is used as KMAC key (only ZKA

standard).
WFS_PIN_USECHIPLT Key is used as KGKLT key (only ZKA

standard).
WFS_PIN_USECHIPMACLZ Key is used as KPACMAC key (only ZKA

standard).

CWA 16926-6:2020 (E)

49

WFS_PIN_USECHIPMACAZ Key is used as KMASTER key (only ZKA
standard).

WFS_PIN_USERSAPUBLICVERIFY Key is used as a public key for RSA
signature verification and/or data decryption.

WFS_PIN_USECONSTRUCT Key is under construction through the import
of multiple parts. This value can be returned
in combination with any one of the other key
usage flags (other than
WFS_PIN_USESECURECONSTRUCT).

WFS_PIN_USESECURECONSTRUCT Key is under construction through the import
of multiple parts from a secure encryption
key entry buffer. This value can be returned
in combination with any of the other key
usage flags (other than
WFS_PIN_USECONSTRUCT).

WFS_PIN_USEANSTR31MASTER Key is an ANS X9 TR-31 key block master
key (see reference 35).

WFS_PIN_USEPINREMOTE Key is used only for PIN block creation.
WFS_PIN_USERESTRICTEDKEYENCKEY Key is used as

WFS_PIN_USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN_USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

WFS_PIN_USEKEYDERKEY Key is a key derivation key (see reference
45). This value must be combined with the
use that later subsequently derived keys have
e.g. if the key is an Initial PIN Encrypt Key
(IPEK), this value must be combined with
WFS_PIN_USEREMOTE and optionally
WFS_PIN_USEFUNTION. If the optional
Data and Mac keys are supported, this value
must be combined with
WFS_PIN_USECRYPT and
WFS_PIN_USEMACING.

bGeneration
Specifies the generation of the key as BCD value. Different generations might correspond to
different environments (e.g. test or production environment). The content is vendor specific. This
value will be 0xFF if no such information is available for the key.

bVersion
Specifies the version of the key (the year in which the key is valid, e.g. 01 for 2001) as BCD
value. This value will be 0xFF if no such information is available for the key.

bActivatingDate
Specifies the date when the key is activated as BCD value in the format YYYYMMDD. This
value will be 0xFFFFFFFF if no such information is available for the key.

bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. This value
will be 0xFFFFFFFF if no such information is available for the key.

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator).

CWA 16926-6:2015 (E)

50

lpxKeyBlockHeader
Contains the key block header of keys imported within an ANS TR-31 key block. This data is
encoded in the same format that it was imported in, and contains all mandatory and optional
header fields. lpxKeyBlockHeader is NULL if the key was not imported within a key block or has
not been loaded yet. The dwUse field provides an accurate summary of the key use, but the use
defined within the key block header is more precise. See the TR-31 Key Use Appendix for
additional detail.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments When the encryption module contains a public/private key-pair, only the private part of the key
will be reported. Every private key in the encryption module will always have a corresponding
public key with the same name. The public key can be exported with
WFS_CMD_PIN_EXPORT_EPP_SIGNED_ITEM.

CWA 16926-6:2020 (E)

51

4.7 WFS_INF_PIN_SECUREKEY_DETAIL

Description This command reports the secure key entry method used by the device. This allows an application
to enable the relevant keys and inform the user how to enter the hex digits 'A' to 'F', e.g. by
displaying an image indicating which key pad locations correspond to the 16 hex digits and/or
shift key. It reports the following information:

• The secure key entry mode (uses a shift key to access the hex digit 'A' to 'F' or each hex
digit has a specific key assigned to it).

• The function keys and FDKs available during secure key entry.

• The FDKs that are configured as function keys (Enter, Cancel, Clear and Backspace).

• The physical keyboard layout.

The keys that are active during the secure key entry command are vendor specific but must be
sufficient to enter a secure encryption key. On some systems a unique key is assigned to each
encryption key digit. On some systems encryption key digits are entered by pressing a shift key
and then a numeric digit, e.g. to enter 'A' the shift key (WFS_PIN_FK_SHIFT) is pressed
followed by the zero key (WFS_PIN_FK_0). On these systems WFS_PIN_FK_SHIFT is not
returned to the application in a WFS_EXEE_PIN_KEY event. The exact behavior of the shift key
is vendor dependent, some devices will require the shift to be used before every key and some
may require the shift key to enter and exit shift mode.

There are many different styles of PIN pads in operation. Most have a regular shape with all keys
having the same size and are laid out in a regular matrix. However, some devices have a layout
with keys of different sizes and different numbers of keys on some rows and columns. This
command returns information that allows an application to provide user instructions and an image
of the keyboard layout to assist with key entry.

Note: As this command is geared to use with devices with Physical Keys e.g. key position and
size are measured using the range 1 – 1000 and fwKeyEntryMode expresses layout in terms of
regular and irregular, it’s use on ETS devices (see WFSPINCAPS fwType) is limited. Therefore,
for maximum compatibility, it is recommended that the WFS_INF_PIN_GET_LAYOUT
command be used in preference to this command.

Input Param None.

Output Param LPWFSPINSECUREKEYDETAIL lpSecureKeyDetail;
typedef struct _wfs_pin_secure_key_detail
 {
 WORD fwKeyEntryMode;
 LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;
 ULONG ulClearFDK;
 ULONG ulCancelFDK;
 ULONG ulBackspaceFDK;
 ULONG ulEnterFDK;
 WORD wColumns;
 WORD wRows;
 LPWFSPINHEXKEYS *lppHexKeys;
 } WFSPINSECUREKEYDETAIL, *LPWFSPINSECUREKEYDETAIL;

fwKeyEntryMode
Specifies the method to be used to enter the encryption key digits (including 'A' to 'F') during
secure key entry. The value can be one of the following.

Value Meaning
WFS_PIN_SECUREKEY_NOTSUPP Secure key entry is not supported, all other

parameters are undefined.

CWA 16926-6:2015 (E)

52

WFS_PIN_SECUREKEY_REG_SHIFT Secure key hex digits 'A' - 'F' are accessed
through the shift key. Digits 'A' - 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A' to 'F' are defined within
the lppHexKeys parameter. The keyboard
has a regular shaped key layout where all
rows have the same number of keys and all
columns have the same number of keys, e.g.
5x4. The lppHexKeys parameter must
contain one entry for each key on the PIN
pad (i.e. the product of wRows by
wColumns).

WFS_PIN_SECUREKEY_IRREG_SHIFT Secure key hex digits 'A' - 'F' are accessed
through the shift key. Digits 'A' - 'F' are
accessed through the shift key followed by
one of the other function keys. The keys
associated with 'A' to 'F' are defined within
the lppHexKeys parameter. The keyboard
has an irregular shaped key layout, e.g. there
are more or less keys on one row or column
than on the others. The lppHexKeys
parameter must contain one entry for each
key on the PIN pad.

WFS_PIN_SECUREKEY_REG_UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit. The
keyboard has a regular shaped key layout
where all rows have the same number of
keys and all columns have the same number
of keys, e.g. 5x4. The lppHexKeys parameter
must contain one entry for each key on the
PIN pad (i.e. the product of wRows by
wColumns).

WFS_PIN_SECUREKEY_IRREG_UNIQUE Secure key hex digits are accessed through
specific keys assigned to each hex digit. The
keyboard has an irregular shaped key layout,
e.g. there are more or less keys on one row
or column than on the others. The
lppHexKeys must contain one entry for each
key on the PIN pad.

lpFuncKeyDetail
Contains information about the Function Keys and FDKs supported by the device while in secure
key entry mode. This structure is the same as the output structure of the
WFS_INF_PIN_FUNCKEY_DETAIL command with information always returned for every
FDK valid during secure key entry. It describes the function keys that represent the hex digits and
shift key, but also reports any other keys that can be enabled while in secure key entry mode.

The double zero, triple zero and decimal point function keys are not valid during secure key entry
so are never reported.

On a PIN pad where the physical Enter, Clear, Cancel and Backspace keys are used for hex digits
(e.g. WFS_PIN_SECUREKEY_REG_UNIQUE mode), the logical function keys
WFS_PIN_FK_ENTER, WFS_PIN_FK_CLEAR, WFS_PIN_FK_CANCEL and
WFS_PIN_FK_BACKSPACE will not be reported by this command (unless there is another
physical key offering this functionality).

In addition to the existing definition for WFS_INF_PIN_FUNCKEY_DETAIL, the following
definitions replace function keys WFS_PIN_FK_RES1 to WFS_PIN_FK_RES7:

WFS_PIN_FK_A (hex digit A)
WFS_PIN_FK_B (hex digit B)
WFS_PIN_FK_C (hex digit C)
WFS_PIN_FK_D (hex digit D)
WFS_PIN_FK_E (hex digit E)

CWA 16926-6:2020 (E)

53

WFS_PIN_FK_F (hex digit F)
WFS_PIN_FK_SHIFT (Shift key used during hex entry)

ulClearFDK
The FDK code mask reporting any FDKs associated with Clear. If this field is zero then Clear
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Clear.

ulCancelFDK
The FDK code mask reporting any FDKs associated with Cancel. If this field is zero then Cancel
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Cancel.

ulBackspaceFDK
The FDK code mask reporting any FDKs associated with Backspace. If this field is zero then
Backspace through an FDK is not supported, otherwise the bit mask reports which FDKs are
associated with Backspace.

ulEnterFDK
The FDK code mask reporting any FDKs associated with Enter. If this field is zero then Enter
through an FDK is not supported, otherwise the bit mask reports which FDKs are associated with
Enter.

wColumns
Specifies the maximum number of columns on the PIN pad (the columns are defined by the x co-
ordinate values within the lppHexKeys structure below). When the fwKeyEntryMode parameter
represents an irregular shaped keyboard the wRows and wColumns parameters define the ratio of
the width to height, i.e. square if the parameters are the same or rectangular if wColumns is larger
than wRows, etc.

wRows
Specifies the maximum number of rows on the PIN pad (the rows are defined by the y co-ordinate
values within the lppHexKeys structure below). When the fwKeyEntryMode parameter represents
an irregular shaped keyboard the wRows and wColumns parameters define the ratio of the width to
height, i.e. square if the parameters are the same or rectangular if wColumns is larger than wRows,
etc.

lppHexKeys
A NULL-terminated array of pointers to WFSPINHEXKEYS structures describing the physical
keys on the PIN pad, it does not include FDKs.

typedef struct _wfs_pin_hex_keys
 {
 USHORT usXPos;
 USHORT usYPos;
 USHORT usXSize;
 USHORT usYSize;
 ULONG ulFK;
 ULONG ulShiftFK;
 } WFSPINHEXKEYS, *LPWFSPINHEXKEYS;

This array defines the keys associated with the hex digits. Each structure entry describes the
position, size and function key associated with a key. This data must be returned by the
Service Provider. This array represents the PIN pad keys ordered left to right and top to
bottom.

usXPos
Specifies the position of the top left corner of the FK relative to the left hand side of the
keyboard expressed as a value between 0 and 999, where 0 is the left edge and 999 is the right
edge.

usYPos
Specifies the position of the top left corner of the FK relative to the top of the keyboard
expressed as a value between 0 and 999, where 0 is the top edge and 999 is the bottom edge.

usXSize
Specifies the FK width expressed as a value between 1 and 1000, where 1 is the smallest
possible size and 1000 is the full width of the keyboard.

CWA 16926-6:2015 (E)

54

usYSize
Specifies the FK height expressed as a value between 1and 1000, where 1 is the smallest
possible size and 1000 is the full height of the keyboard.

ulFK
Specifies the FK code associated with the physical key in non shifted mode,
WFS_PIN_FK_UNUSED if the key is not used.

ulShiftFK
Specifies the FK code associated with the physical key in shifted mode,
WFS_PIN_FK_UNUSED if the key is not used in shifted mode. This field will always be
WFS_PIN_FK_UNUSED when the fwKeyEntryMode parameter indicates that keyboard does
not use a shift mode.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Examples keyboard layouts are provided in section 8.6 to explain the use of the lppHexKeys
parameter. In addition section 8.6 also provides an example of a command flow required to enter
encryption keys securely.

CWA 16926-6:2020 (E)

55

4.8 WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL

Description This command reports the ZKA logical HSMs available within the EPP. It also reports which
logical HSM is currently active.

Input Param None.

Output Param LPWFSPINHSMDETAIL lpHSMDetail;
typedef struct _wfs_pin_hsm_detail
{
 WORD wActiveLogicalHSM;
 LPWFSPINHSMINFO *lppHSMInfo;
} WFSPINHSMDETAIL, *LPWFSPINHSMDETAIL;

wActiveLogicalHSM
Specifies the serial number of the logical HSM that is currently active. This value is the HSM
serial number (tag CB in the HSM TDATA) encoded as a normal binary value (i.e. it is not a
BCD). If no logical HSMs are present or logical HSMs are not supported then this value is zero.

lppHSMInfo
Pointer to a NULL terminated array of pointers to WFSPINHSMINFO structures (one for each
logical HSM). A NULL pointer is returned if no logical HSMs are supported/present.

typedef struct _wfs_pin_hsm_info
{
 WORD wHSMSerialNumber;
 LPSTR lpsZKAID;
} WFSPINHSMINFO, *LPWFSPINHSMINFO;

wHSMSerialNumber
Specifies the Serial Number of the Logical HSM (tag CB in the HSM TDATA). This value is
encoded as a normal binary value (i.e. it is not a BCD).

lpsZKAID
A null-terminated string containing the ZKA ID of the logical HSM (defined by tag CC in the
HSM TDATA). The characters in the string are EBCDIC characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-6:2015 (E)

56

4.9 WFS_INF_PIN_QUERY_PCIPTS_DEVICE_ID

Description This command is used to report information in order to verify the PCI Security Standards Council
PIN transaction security (PTS) certification held by the PIN device. The command provides
detailed information in order to verify the certification level of the device. Support of this
command by the Service Provider does not imply in anyway the certification level achieved by
the device.

Input Param None.

Output Param LPWFSPINPCIPTSDEVICEID lpPCIPTSDeviceId;
typedef struct _wfs_pin_pcipts_deviceid
{
 LPSTR lpszManufacturerIdentifier;
 LPSTR lpszModelIdentifier;
 LPSTR lpszHardwareIdentifier;
 LPSTR lpszFirmwareIdentifier;
 LPSTR lpszApplicationIdentifier;
} WFSPINPCIPTSDEVICEID, *LPWFSPINPCIPTSDEVICEID;

lpszManufacturerIdentifier
Returns an ASCII string containing the manufacturer identifier of the PIN device. This value is
NULL if the manufacturer identifier is not available. This field is distinct from the HSM key pair
that may be reported in the lpszExtra field by the WFS_INF_PIN_CAPABILITIES command.

lpszModelIdentifier
Returns an ASCII string containing the model identifier of the PIN device. This value is NULL if
the model identifier is not available.

lpszHardwareIdentifier
Returns an ASCII string containing the hardware identifier of the PIN device. This value is NULL
if the hardware identifier is not available.

lpszFirmwareIdentifier
Returns an ASCII string containing the firmware identifier of the PIN device. This value is NULL
if the firmware identifier is not available.

lpszApplicationIdentifier
Returns an ASCII string containing the application identifier of the PIN device. This value is
NULL if the application identifier is not available.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The string contained in lpszManufacturerIdentifier, lpszModelIdentifier, lpszHardwareIdentifier,
lpszFirmwareIdentifier, and lpszApplicationIdentifier are expected to match those submitted to
the PCI Security Standards Council in order for the certification level to be determined. The PCI
PTS certification levels for PIN devices are available on the PCI Security Standards Council
website (see Reference 37).

CWA 16926-6:2020 (E)

57

4.10 WFS_INF_PIN_GET_LAYOUT

Description This command allows an application to retrieve layout information for any PIN device. Either one
layout or all defined layouts can be retrieved with a single request of this command.

There can be a layout for each of the different types of keyboard entry modes, if the vendor and
the hardware support these different methods. The types of keyboard entry modes are (1) Data
Entry mode which corresponds to the WFS_CMD_PIN_GET_DATA command, (2) PIN Entry
mode which corresponds to the WFS_CMD_PIN_GET_PIN command, and (3) Secure Key Entry
mode which corresponds to the WFS_CMD_PIN_SECUREKEY_ENTRY command. The layouts
can be preloaded into the device, if the device supports this, or a single layout can be loaded into
the device immediately prior to the keyboard command being requested.

Input Param LPWFSPINGETLAYOUT lpGetLayout;
typedef struct _wfs_pin_get_layout
 {
 DWORD dwEntryMode;
 } WFSPINGETLAYOUT, *LPWFSPINGETLAYOUT;

dwEntryMode
Specifies entry mode to be returned. It can be one of the following flags, or zero to return all
supported entry modes:

Value Meaning
WFS_PIN_LAYOUT_DATA Specifies that the layout be applied to the

WFS_CMD_PIN_GET_DATA entry
method.

WFS_PIN_LAYOUT_PIN Specifies that the layout be applied to the
WFS_CMD_PIN_GET_PIN entry method.

WFS_PIN_LAYOUT_SECURE Specifies that the layout be applied to the
WFS_CMD_PIN_SECUREKEY_ENTRY
entry method.

Output Param LPWFSPINLAYOUT *lppLayout;

Pointer to a NULL-terminated array of pointers to WFSPINLAYOUT structures.
typedef struct _wfs_pin_layout
 {
 DWORD dwEntryMode;
 USHORT usNumberOfFrames;
 LPWFSPINFRAME *lppFrames;
 } WFSPINLAYOUT, *LPWFSPINLAYOUT;

dwEntryMode
Specifies entry mode to which the layout applies. It can be one of the following flags.

Value Meaning
WFS_PIN_LAYOUT_DATA Specifies that the layout be applied to the

WFS_CMD_PIN_GET_DATA entry
method.

WFS_PIN_LAYOUT_PIN Specifies that the layout be applied to the
WFS_CMD_PIN_GET_PIN entry method.

WFS_PIN_LAYOUT_SECURE Specifies that the layout be applied to the
WFS_CMD_PIN_SECUREKEY_ENTRY
entry method.

usNumberOfFrames
This value indicates the number of WFSPINFRAME structures are included in the lppFrames
parameter.

CWA 16926-6:2015 (E)

58

lppFrames
Pointer to an array of pointers to WFSPINFRAME structures. There can be one or more
WFSPINFRAME structures included. A Physical Frame can only contain Physical Keys. It can
contain Physical Keys positioned on the edge of the screen (for example, FDKs) or Physical Keys
not positioned on the edge of the screen (for example EPP) but cannot contain both. A Touch
Frame (see section 2.1) can only contain Touch Keys. To determine the frame type,
usFrameXSize and usFrameYSize should be checked. Refer to the table in the Comments for the
different types of frames, and see the diagram in the Comments for an example.

typedef struct _wfs_pin_frame
 {
 USHORT usFrameXPos;
 USHORT usFrameYPos;
 USHORT usFrameXSize;
 USHORT usFrameYSize;
 WORD wFloatAction;
 LPWFSPINFK *lppFKs;
 } WFSPINFRAME, *LPWFSPINFRAME;

usFrameXPos
If the frame contains Touch Keys, specifies the left edge of the frame as an offset from the left
edge of the screen in pixels and will be less than the width of the screen.

If the frame contains Physical Keys on the boundary of the screen, specifies the left coordinate
of the frame as an offset from the left edge of the screen in pixels and will be 0 or the width of
the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
usFrameYPos
If the frame contains Touch Keys, specifies the top edge of the frame as an offset from the top
edge of the screen in pixels and will be less than the height of the screen.

If the frame contains Physical Keys on the boundary of the screen, specifies the top edge of
the frame as an offset from the top edge of the screen in pixels and will be 0 or the height of
the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
usFrameXSize
If the frame contains Touch Keys, specifies the width of the frame in pixels and will be greater
than 0 and less than the width of the screen minus usFrameXPos.

If the frame contains Physical Keys on the boundary of the screen, specifies the width of the
frame in pixels and will be 0 or the width of the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
usFrameYSize
If the frame contains Touch Keys, specifies the height of the frame in pixels and will be
greater than 0 and less than the height of the screen minus usFrameYPos.

If the frame contains Physical Keys on the boundary of the screen, specifies the height of the
frame in pixels and will be 0 or the height of the screen in pixels.

If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.

wFloatAction
Specifies the type of float action as WFS_PIN_FLOAT_NONE if the PIN device will not
randomly shift the layout or else a combination of the following flags:

Value Meaning
WFS_PIN_FLOATX Specifies that the PIN device will

randomly shift the layout in a horizontal
direction. Applicable to ETS devices
only.

WFS_PIN_FLOATY Specifies that the PIN device will
randomly shift the layout in a vertical
direction. Applicable to ETS devices
only.

For any non-ETS device, this value should be set to WFS_PIN_FLOAT_NONE.

CWA 16926-6:2020 (E)

59

lppFKs
Pointer to a NULL-terminated array of pointers to WFSPINFK structures defining details of
the keys in the keyboard. See below.

typedef struct _wfs_pin_fk
 {
 USHORT usXPos;
 USHORT usYPos;
 USHORT usXSize;
 USHORT usYSize;
 WORD wKeyType;
 ULONG ulFK;
 ULONG ulShiftFK;
 } WFSPINFK, *LPWFSPINFK;

usXPos
Specifies the position of the left edge of the key relative to the left side of the frame. See
the table in Comments for possible values.

usYPos
Specifies the position of the top edge of the key relative to the top edge of the frame. See
the table in Comments for possible values.

usXSize
Specifies the key width. See the table in Comments for possible values.

usYSize
Specifies the key height. See the table in Comments for possible values.

wKeyType
Defines the type of XFS key definition value is represented by ulFK and ulShiftFK.

Value Meaning
WFS_PIN_FK Function Keys are being used.
WFS_PIN_FDK Function Descriptor Keys are being

used.

ulFK
Specifies the FK code associated with the key in non-shifted mode,
WFS_PIN_FK_UNUSED if the key is not used.

ulShiftFK
Specifies the FK code associated with the key in shifted mode, WFS_PIN_FK_UNUSED
if the key is not used in shifted mode.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_MODENOTSUPPORTED The specified entry mode is not supported.

Events None.

Comments The following table defines the possible size and position values that apply to each frame type.

Frame Type

WFSPINFRAME WFSPINKEY

us
F

ra
m

eX
Si

ze

us
F

ra
m

eY
Si

ze

us
F

ra
m

eX
Po

s

U
sF

ra
m

eY
Po

s

us
X

Si
ze

us
YS

iz
e

us
X

Po
s

us
YP

os

Physical Keys on EPP 0 0 0 0 1 to 10001 1 to 10002 0 to 9993 0 to 9994
Touch Keys on ETS > 0 > 0 >= 0 >= 0 0 to

(usFrameXSize
- usXPos)

0 to
(usFrameYSize

- usYPos)

0 to
usFrameXSize

0 to
usFrameYsize

Physical Keys on Left
Boundary of Screen

0 > 0 0 0 0 0 to
(usFrameYSize

- usYPos)

0 0 to
usFrameYsize

CWA 16926-6:2015 (E)

60

Physical Keys on Right
Boundary of Screen

0 > 0 > 0 0 0 0 to
(usFrameYSize

- usYPos)

usFrameXSize 0 to
usFrameYsize

Physical Keys on Top
Boundary of Screen

> 0 0 0 0 0 to
(usFrameXSize

- usXPos)

0 0 to
usFrameXSize

0

Physical Keys on
Bottom Boundary of

Screen

> 0 0 0 > 0 0 to
(usFrameXSize

- usXPos)

0 0 to
usFrameXSize

usFrameYSize

1: 1 is the smallest possible size and 1000 is the full width of the frame

2: 1 is the smallest possible size and 1000 is the full height of the frame
3: 0 is the left edge and 999 is the right edge of the frame
4: 0 is the top edge and 999 is the bottom edge of the frame

The following diagram shows an example configuration consisting of an EPP and Physical FDKs
to the left and right of the screen. 3 frames contain the Physical Keys.

lppFrames[2] (Right FDKs)
usFrameXPos = 1024
usFrameYPos = 0
usFrameXSize = 0
usFrameYSize = 768

lppFrames[1] (Left FDKs)
usFrameXPos = 0
usFrameYPos = 0

usFrameXSize = 0
usFrameYSize = 768

0, 0

1024, 768

lppFrames[1]->lppFKs[0]
usXPos = 0
usYPos = 400
usXSize = 0
usYSize = 50

0, 0

999, 999

lppFrames[0] (EPP)
usFrameXPos = 0
usFrameYPos = 0

usFrameXSize = 0
usFrameXSize = 0

lppFrames[0]->lppFKs[3]
usXPos = 730
usYPos = 55
usXSize = 230
usYSize = 180

CWA 16926-6:2020 (E)

61

4.11 WFS_INF_PIN_KEY_DETAIL_340

Description This command returns extended detailed information about the keys in the encryption module,
including DES, DUKPT, AES, RSA private and public keys. This command will also return
information on all keys loaded during manufacture that can be used by applications.

Details relating to the keys loaded using OPT (via the ZKA WFS_PIN_PROTISOPS protocol) are
retrieved using the ZKA WFS_PIN_PROTHSMLDI protocol. These keys are not reported by this
command.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested. If NULL, detailed information about
all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAIL340 *lppKeyDetail340;

Pointer to a null-terminated array of pointers to WFSPINKEYDETAIL340 structures.
typedef struct _wfs_pin_key_detail_340
 {
 LPSTR lpsKeyName;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 DWORD fwLoaded;
 LPWFSPINKEYBLOCKINFO lpKeyBlockInfo;
 } WFSPINKEYDETAIL340, *LPWFSPINKEYDETAIL340;

lpsKeyName
Specifies the name of the key.

bGeneration
Specifies the generation of the key as BCD value. Different generations might correspond to
different environments (e.g. test or production environment). The content is vendor specific. This
value will be 0xFF if no such information is available for the key.

bVersion
Specifies the version of the key (the year in which the key is valid, e.g. 01 for 2001) as BCD
value. This value will be 0xFF if no such information is available for the key.

bActivatingDate
Specifies the date when the key is activated as BCD value in the format YYYYMMDD. This
value will be expressed as 0xFF, 0xFF, 0xFF, 0xFF if no such information is available for the
key.

bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. This value
will be 0xFFFFFFFF if no such information is available for the key.

fwLoaded
Specifies whether the key has been loaded (imported from Application or locally from Operator),
as a combination of the following flags:

Value Meaning
WFS_PIN_LOADED_NO The key is not loaded or not ready to be used

in cryptographic operations.
WFS_PIN_LOADED_YES The key is loaded and ready to be used in

cryptographic operations.
WFS_PIN_LOADED_UNKNOWN The state of the key is unknown.
WFS_PIN_LOADED_CONSTRUCT The key is under construction, meaning that

at least one key part has been loaded but the
key is not activated and ready to be used in
other cryptographic operations. This flag can
only be returned in combination with
WFS_PIN_LOADED_NO.

CWA 16926-6:2015 (E)

62

lpKeyBlockInfo
Pointer to a WFSPINKEYBLOCKINFO structure.

typedef struct _wfs_pin_key_block_info
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 BYTE bKeyVersionNumber[2];
 BYTE bExportability;
 LPWFSXDATA lpxOptionalBlockHeader;
 ULONG ulKeyLength;
} WFSPINKEYBLOCKINFO, *LPWFSPINKEYBLOCKINFO;

bKeyUsage
Specifies the intended function of the key. See [Reference 35. ANS X9 TR-31 2018] for all
possible values.

bAlgorithm
Specifies the algorithm for which the key may be used. See [Reference 35. ANS X9 TR-31
2018] for all possible values.

bModeOfUse
Specifies the operation that the key may perform. See [Reference 35. ANS X9 TR-31 2018]
for all possible values.

bKeyVersionNumber
Specifies a two-digit ASCII character version number, which is optionally used to indicate that
contents of the key block are a component, or to prevent re-injection of old keys. See
[Reference 35. ANS X9 TR-31 2018] for all possible values.

bExportability
Specifies whether the key may be transferred outside of the cryptographic domain in which the
key is found. See [Reference 35. ANS X9 TR-31 2018] for all possible values.

lpxOptionalBlockHeader
Contains any optional header blocks, as defined in [Reference 35. ANS X9 TR-31 2018]. This
value will be NULL if there are no optional block headers.

ulKeyLength
Specifies the length, in bits, of the key. 0 if the key length is unknown.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments None.

CWA 16926-6:2020 (E)

63

5. Execute Commands

5.1 Normal PIN Commands

The following commands are those commands that are used in a normal transaction with the encryptor.

5.1.1 WFS_CMD_PIN_CRYPT

Description The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the WFS_INF_PIN_CAPABILITIES command.

This command can also be used for random number generation.

Furthermore it can be used for Message Authentication Code generation (i.e. MACing). The input
data is padded to the necessary length mandated by the encryption algorithm using the bPadding
parameter. Applications can generate a MAC using an alternative padding method by pre-
formatting the data passed and combining this with the standard padding method.

The Start Value (or Initialization Vector) should be able to be passed encrypted like the specified
encryption/decryption key. It would therefore need to be decrypted with a loaded key so the name
of this key must also be passed. However, both these parameters are optional.

In order to access maximum functionality, it is recommended that applications should use the
WFS_CMD_PIN_CRYPT_340 command if the encryption mode being used is not random.

Input Param LPWFSPINCRYPT lpCrypt;
typedef struct _wfs_pin_crypt
 {
 WORD wMode;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 WORD wAlgorithm;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
 } WFSPINCRYPT, *LPWFSPINCRYPT;

wMode
If MACing then this parameter will be ignored, otherwise this parameter specifies the mode,
values are one of the following:

Value Meaning
WFS_PIN_MODEENCRYPT Encrypt with key.
WFS_PIN_MODEDECRYPT Decrypt with key.
WFS_PIN_MODERANDOM An 8 byte random value shall be returned (in

this case all the other input parameters are
ignored).

This parameter does not apply to MACing.

lpsKey
Specifies the name of the stored key. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

lpxKeyEncKey
If NULL, lpsKey is used directly for encryption/decryption. Otherwise, lpsKey is used to decrypt
(in ECB mode) the encrypted key passed in lpxKeyEncKey and the result is used for
encryption/decryption. Users of this specification must adhere to local regulations when using
Triple DES. This value is ignored, if wMode equals WFS_PIN_MODERANDOM.

wAlgorithm
Specifies the encryption algorithm. Possible values are those described in
WFS_INF_PIN_CAPABILITIES. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

CWA 16926-6:2015 (E)

64

lpsStartValueKey
Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the Initialization
Vector. If this parameter is NULL, lpxStartValue is used as the Initialization Vector. This value is
ignored, if wMode equals WFS_PIN_MODERANDOM.

lpxStartValue
DES and Triple DES initialization vector for CBC / CFB encryption and MACing. If this
parameter is NULL the default value for CBC / CFB / MAC is 16 hex digits 0x0. This value is
ignored, if wMode equals WFS_PIN_MODERANDOM.

bPadding
Specifies the padding character. The padding character is a full byte, e.g. 0xFF. This value is
ignored, if wMode equals WFS_PIN_MODERANDOM. The valid range is 0x00 to 0xFF.

bCompression
Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character (e.g. 0x20 in ASCII or 0x40 in EBCDIC). This value is
ignored, if wMode equals WFS_PIN_MODERANDOM.

lpxCryptData
Pointer to the data to be encrypted, decrypted, or MACed. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

Output Param LPWFSXDATA lpxCryptData;

lpxCryptData
Pointer to the encrypted or decrypted data, MAC value or 8 byte random value.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_MODENOTSUPPORTED The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key name was found but the
corresponding key value has not been
loaded.

WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this
key.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey or
lpxStartValue is not supported or the length
of an encryption key is not compatible with
the encryption operation required.

WFS_ERR_PIN_NOCHIPTRANSACTIVE A chipcard key is used as encryption key and
there is no chip transaction active.

WFS_ERR_PIN_ALGORITHMNOTSUPP The specified algorithm is not supported by
this key.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
WFS_EXEE_PIN_DUKPT_KSN An lpsKey with

WFS_PIN_USEKEYDERKEY usage has
been used to encrypt or MAC the data.

Comments The key used for encryption/decryption must be a double-length or triple-length key when used
for Triple DES encryption/decryption. If a double-length or triple-length key is used when a DES
encryption algorithm is specified, or a single-length key is used when Triple DES is specified, the
WFS_ERR_PIN_INVALIDKEYLENGTH error is returned. Users of this specification must
adhere to local regulations when using Triple DES.

CWA 16926-6:2020 (E)

65

The data type LPWFSXDATA is used to pass hexadecimal data and is defined as follows:
typedef struct _wfs_hex_data
 {
 USHORT usLength;
 LPBYTE lpbData;
 } WFSXDATA, *LPWFSXDATA;

usLength
Length of the byte stream pointed to by lpbData.

lpbData
Pointer to the binary data stream.

CWA 16926-6:2015 (E)

66

5.1.2 WFS_CMD_PIN_IMPORT_KEY

Description The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
“key encryption key”. A key can be loaded in multiple unencrypted parts by combining the
WFS_PIN_USECONSTRUCT or WFS_PIN_USESECURECONSTRUCT value with the final
usage flags within the fwUse field.

If the WFS_PIN_USECONSTRUCT flag is used then the application must provide the key data
through the lpxValue parameter, If WFS_PIN_USESECURECONSTRUCT is used then the
encryption key part in the secure key buffer previously populated with the
WFS_CMD_PIN_SECUREKEY_ENTRY command is used and lpxValue is ignored. Key parts
loaded with the WFS_PIN_USESECURECONSTRUCT flag can only be stored once as the
encryption key in the secure key buffer is no longer available after this command has been
executed. The WFS_PIN_USECONSTRUCT and WFS_PIN_USESECURECONSTRUCT
construction flags cannot be used in combination.

Input Param LPWFSPINIMPORT lpImport;
typedef struct _wfs_pin_import
 {
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxValue;
 WORD fwUse;
 } WFSPINIMPORT, *LPWFSPINIMPORT;

lpsKey
Specifies the name of key being loaded.

lpsEncKey
lpsEncKey specifies a key name or a format name which was used to encrypt (in ECB mode) the
key passed in lpxValue. If lpsEncKey is NULL the key is loaded directly into the encryption
module. lpsEncKey must be NULL if fwUse contains WFS_PIN_USECONSTRUCT or
WFS_PIN_USESECURECONSTRUCT.

lpxIdent
Specifies the key owner identification. It is a handle to the encryption module and is returned to
the application in the WFS_CMD_PIN_INITIALIZATION command. See fwIDKey in
WFS_INF_PIN_CAPABILITIES for whether this value is required. If not required lpxIdent
should be NULL. The use of this parameter is vendor dependent.

lpxValue
Specifies the value of key to be loaded.

fwUse
Specifies the type of access for which the key can be used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key can be used for encryption/decryption.
WFS_PIN_USEFUNCTION Key can be used for PIN functions (PIN

block creation and local PIN check).
WFS_PIN_USEMACING Key can be used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USENODUPLICATE Key can be imported only once.
WFS_PIN_USESVENCKEY Key is used as CBC Start Value encryption

key.
WFS_PIN_USECONSTRUCT Key is under construction through the import

of multiple parts. This value is used in
combination with the actual usage flags for
the key.

CWA 16926-6:2020 (E)

67

WFS_PIN_USESECURECONSTRUCT Key is under construction through the import
of multiple parts. This value is used in
combination with the actual usage flags for
the key. lpxValue is ignored as the
encryption key part is taken from the secure
key buffer.

WFS_PIN_USEANSTR31MASTER Key can be used for importing keys
packaged within an ANS TR-31 key block.
This key usage can only be combined with
WFS_PIN_USECONSTRUCT and
WFS_PIN_USESECURECONSTRUCT.

WFS_PIN_USERESTRICTEDKEYENCKEY Key is used as
WFS_PIN_USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN_USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

If fwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

Output Param LPWFSXDATA lpxKVC;

lpxKVC
Contains the key verification code data that can be used for verification of the loaded key, NULL
if device does not have that capability.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not

found or attempting to delete a non-existent
key.

WFS_ERR_PIN_ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not

loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported or

the encryption key in the secure key buffer is
invalid (or has not been entered) or the
length of an encryption key is not compatible
with the encryption operation required.

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments When keys are loaded in multiple parts, all parts of the key loaded must set the relevant
construction value in the fwUse field along with any usages needed for the final key use. The
usage flags must be consistent for all parts of the key. Activation of the key entered in multiple

CWA 16926-6:2015 (E)

68

parts is indicated through an additional final call to this command, where the construction flag is
removed from fwUse but those other usage’s defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A
WFS_ERR_PIN_ACCESSDENIED error will be returned if the key cannot be activated, e.g. if
only one key part has been entered.

The optional KCV is only returned during the final activation step. Applications wishing to verify
the KCV for each key part (and passing keys as a parameter to this command) will need to load
each key part into a temporary location inside the encryptor. If the application determines the
KCV of the key part is valid, then the application calls the WFS_CMD_PIN_IMPORT_KEY
again to load the key part into the device. The application should delete the temporary key part as
soon as the KCV for that key part has been verified. It is not possible to verify a key part being
loaded from a secure key buffer with this command. This is achieved through the
WFS_CMD_PIN_SECUREKEY_ENTRY command.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a fwUse value that indicates it is under construction, it
cannot be used for cryptographic functions.

CWA 16926-6:2020 (E)

69

5.1.3 WFS_CMD_PIN_DERIVE_KEY

Description A key is derived from input data using a key generating key and an initialization vector. The input
data can be expanded with a fill-character to the necessary length (mandated by the encryption
algorithm being used). The derived key is imported into the encryption module and can then be
used for further operations.

Input Param LPWFSPINDERIVE lpDerive;
typedef struct _wfs_pin_derive
 {
 WORD wDerivationAlgorithm;
 LPSTR lpsKey;
 LPSTR lpsKeyGenKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 LPWFSXDATA lpxInputData;
 LPWFSXDATA lpxIdent;
 } WFSPINDERIVE, *LPWFSPINDERIVE;

wDerivationAlgorithm
Specifies the algorithm that is used for derivation. Possible values are:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the name where the derived key will be stored.

lpsKeyGenKey
Specifies the name of the key generating key that is used for the derivation.

lpsStartValueKey
Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the Initialization
Vector. If this parameter is NULL, lpxStartValue is used as the Initialization Vector.

lpxStartValue
DES initialization vector for the encryption step within the derivation.

bPadding
Specifies the padding character for the encryption step within the derivation. The valid range is
0x00 to 0xFF.

lpxInputData
Pointer to the data to be used for key derivation.

lpxIdent
Specifies the key owner identification. It is a handle to the encryption module and is returned to
the application in the WFS_CMD_PIN_INITIALIZATION command. See fwIDKey in
WFS_INF_PIN_CAPABILITIES for whether this value is required. If not required lpxIdent
should be NULL. The use of this parameter is vendor dependent.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized (or not ready for some vendor
specific reason).

WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.

CWA 16926-6:2015 (E)

70

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxStartValue is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

WFS_ERR_PIN_ALGORITHMNOTSUPP The specified algorithm is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2020 (E)

71

5.1.4 WFS_CMD_PIN_GET_PIN

Description This function stores the PIN entry via the PIN pad. From the point this function is invoked, PIN
digit entries are not passed to the application. For each PIN digit, or any other active key entered,
an execute notification event WFS_EXEE_PIN_KEY is sent in order to allow an application to
perform the appropriate display action (i.e. when the PIN pad has no integrated display). The
application is not informed of the value entered. The execute notification only informs that a key
has been depressed.

The WFS_EXEE_PIN_ENTERDATA event will be generated when the PIN pad is ready for the
user to start entering data.

Some PIN pad devices do not inform the application as each PIN digit is entered, but locally
process the PIN entry based upon minimum PIN length and maximum PIN length input
parameters.

When the maximum number of PIN digits is entered and the flag bAutoEnd is true, or a
terminating key is pressed after the minimum number of PIN digits is entered, the command
completes. If the <Cancel> key is a terminator key and is pressed, then the command will
complete successfully even if the minimum number of PIN digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has
been reached) or <Cancel> (can terminate before minimum length is reached). The configuration
of this functionality is vendor specific.

If usMaxLen is zero, the Service Provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

If active the WFS_PIN_FK_CANCEL and WFS_PIN_FK_CLEAR keys will cause the PIN
buffer to be cleared. The WFS_PIN_FK_BACKSPACE key will cause the last key in the PIN
buffer to be removed.

Terminating keys have to be active keys to operate.

If this command is cancelled by a WFSCancelAsyncRequest or a WFSCancelBlockingCall the
PIN buffer is not cleared.

If usMaxLen has been met and bAutoEnd is set to False, then all numeric keys will automatically
be disabled. If the CLEAR or BACKSPACE key is pressed to reduce the number of entered keys,
the numeric keys will be re-enabled.

If the ENTER key (or FDK representing the ENTER key – note that the association of an FDK to
ENTER functionality is vendor specific) is pressed prior to usMinLen being met, then the ENTER
key or FDK is ignored. In some cases the PIN pad device cannot ignore the ENTER key then the
command will complete normally. To handle these types of devices the application should use the
output parameter usDigits field to check that sufficient digits have been entered. The application
should then get the user to re-enter their PIN with the correct number of digits.

If the application makes a call to WFS_CMD_PIN_GET_PINBLOCK or a local verification
command without the minimum PIN digits having been entered, either the command will fail or
the PIN verification will fail.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

Input Param LPWFSPINGETPIN lpGetPin;

CWA 16926-6:2015 (E)

72

typedef struct _wfs_pin_getpin
 {
 USHORT usMinLen;
 USHORT usMaxLen;
 BOOL bAutoEnd;
 CHAR cEcho;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
 } WFSPINGETPIN, *LPWFSPINGETPIN;

usMinLen
Specifies the minimum number of digits which must be entered for the PIN. A value of zero
indicates no minimum PIN length verification.

usMaxLen
Specifies the maximum number of digits which can be entered for the PIN. A value of zero
indicates no maximum PIN length verification.

bAutoEnd
If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. bAutoEnd is ignored when usMaxLen is set to zero.

cEcho
Specifies the replace character to be echoed on a local display for the PIN digit.

ulActiveFDKs
Specifies a mask of those FDKs which are active during the execution of the command (see
WFS_INF_PIN_FUNCKEY_DETAIL).

ulActiveKeys
Specifies a mask of those (other) Function Keys which are active during the execution of the
command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateFDKs
Specifies a mask of those FDKs which must terminate the execution of the command (see
WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateKeys
Specifies a mask of those (other) Function Keys which must terminate the execution of the
command (see WFS_INF_PIN_FUNCKEY_DETAIL).

Output Param LPWFSPINENTRY lpEntry;
typedef struct _wfs_pin_entry
 {
 USHORT usDigits;
 WORD wCompletion;
 } WFSPINENTRY, *LPWFSPINENTRY;

usDigits
Specifies the number of PIN digits entered.

wCompletion
Specifies the reason for completion of the entry. Unless otherwise specified the following values
must not be used in the execute event WFS_EXEE_PIN_KEY or in the array of keys in the
completion of WFS_PIN_CMD_GET_DATA. Possible values are:

Value Meaning
WFS_PIN_COMPAUTO The command terminated automatically,

because maximum length was reached.
WFS_PIN_COMPENTER The ENTER Function Key was pressed as

terminating key.
WFS_PIN_COMPCANCEL The CANCEL Function Key was pressed as

terminating key.

CWA 16926-6:2020 (E)

73

WFS_PIN_COMPCONTINUE A function key was pressed and input may
continue unless the command completes
(this value is only used in the execute event
WFS_EXEE_PIN_KEY and in the array of
keys in the completion of
WFS_PIN_CMD_GET_DATA).

WFS_PIN_COMPCLEAR The CLEAR Function Key was pressed as
terminating key and the previous input is
cleared.

WFS_PIN_COMPBACKSPACE The last input digit was cleared and the key
was pressed as terminating key.

WFS_PIN_COMPFDK Indicates input is terminated only if the FDK
pressed was set to be a terminating FDK.

WFS_PIN_COMPHELP The HELP Function Key was pressed as
terminating key.

WFS_PIN_COMPFK A Function Key (FK) other than ENTER,
CLEAR, CANCEL, BACKSPACE, HELP
was pressed as terminating key.

WFS_PIN_COMPCONTFDK An FDK was pressed and input may
continue unless the command completes
(this value is only used in the execute event
WFS_EXEE_PIN_KEY and in the array of
keys in the completion of
WFS_PIN_CMD_GET_DATA).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or

FDKs is invalid.
WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or

FDKs is not supported by the Service
Provider.

WFS_ERR_PIN_NOACTIVEKEYS There are no active function keys specified,
or there is no defined layout definition.

WFS_ERR_PIN_NOTERMINATEKEYS There are no terminate keys specified and
usMaxLen is not set to zero and bAutoEnd is
FALSE.

WFS_ERR_PIN_MINIMUMLENGTH The minimum PIN length field is invalid or
greater than the maximum PIN length field
when the maximum PIN length is not zero.

WFS_ERR_PIN_TOOMANYFRAMES The device requires that only one frame is
used for this command.

WFS_ERR_PIN_PARTIALFRAME The single Touch Frame does not cover the
entire monitor.

WFS_ERR_PIN_ENTRYTIMEOUT The timeout for entering data has been
reached. This is a timeout which may be due
to hardware limitations or legislative
requirements (for example PCI).

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the PIN pad.
WFS_EXEE_PIN_ENTERDATA The PIN pad is ready for the user to start

entering data.
WFS_EXEE_PIN_LAYOUT The layout has changed position. For ETS

devices only.

Comments None.

CWA 16926-6:2015 (E)

74

5.1.5 WFS_CMD_PIN_LOCAL_DES

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the DES validation algorithm and locally verified for correctness. The
result of the verification is returned to the application. This command will clear the PIN unless the
application has requested that the PIN be maintained through the
WFS_CMD_PIN_MAINTAIN_PIN command.

Input Param LPWFSPINLOCALDES lpLocalDES;
typedef struct _wfs_pin_local_des
 {
 LPSTR lpsValidationData;
 LPSTR lpsOffset;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 BOOL bNoLeadingZero;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
 } WFSPINLOCALDES, *LPWFSPINLOCALDES;

lpsValidationData
Customer specific data (normally obtained from card track data) used to validate the correctness
of the PIN. The validation data should be an ASCII string.

lpsOffset
ASCII string defining the offset data for the PIN block as an ASCII string; if NULL then no offset
is used. The character must be in the ranges ‘0’ to ‘9’, ‘a’ to ‘f’ and ‘A’ to ‘F’.

bPadding
Specifies the padding character for the validation data. If the validation data is less than 16
characters long then it will be padded with this character. If bPadding is in the range 0x00 to
0x0F, padding is applied after the validation data has been compressed. If the bPadding character
is in the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is
compressed.

usMaxPIN
Maximum number of PIN digits to be used for validation. This parameter corresponds to
PINMINL in the IBM 3624 specification.

usValDigits
Number of Validation digits from the validation data to be used for validation. This is the length
of the lpsValidationData string.

bNoLeadingZero
If set to TRUE and the first digit of result of the modulo 10 addition is a 0x0, it is replaced with
0x1 before performing the verification against the entered PIN. If set to FALSE, a leading zero is
allowed in entered PINs.

lpsKey
Name of the key to be used for validation. The key referenced by lpsKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_USEPINLOCAL attribute.

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPBOOL lpbResult;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

CWA 16926-6:2020 (E)

75

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been

cleared.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey is not

supported or the length of an encryption key
is not compatible with the encryption
operation required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments The PINMAXL value as defined in the IBM 3624 specification is the length of the PIN entered
during the WFS_CMD_PIN_GET_PIN command.

CWA 16926-6:2015 (E)

76

5.1.6 WFS_CMD_PIN_CREATE_OFFSET

Description This function is used to generate a PIN Offset that is typically written to a card and later used to
verify the PIN with the WFS_CMD_PIN_LOCAL_DES command. The PIN offset is computed
by combining validation data with the keypad entered PIN. This command will clear the PIN
unless the application has requested that the PIN be maintained through the
WFS_CMD_PIN_MAINTAIN_PIN command.

Input Param LPWFSPINCREATEOFFSET lpPINOffset;
typedef struct _wfs_pin_create_offset
 {
 LPSTR lpsValidationData;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
 } WFSPINCREATEOFFSET, *LPWFSPINCREATEOFFSET;

lpsValidationData
Validation data. The validation data should be an ASCII string.

bPadding
Specifies the padding character for validation data. If bPadding is in the range 0x00 to 0x0F,
padding is applied after the validation data has been compressed. If the bPadding character is in
the range ‘0’ to ‘9’, ‘a’ to ‘f’, or ‘A’ to ‘F’, padding is applied before the validation data is
compressed.

usMaxPIN
Maximum number of PIN digits to be used for PIN Offset creation. This parameter corresponds to
PINMINL in the IBM 3624 specification.

usValDigits
Number of Validation Data digits to be used for PIN Offset creation. This is the length of the
lpsValidationData string.

lpsKey
Name of the validation key. The key referenced by lpsKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_USEPINLOCAL attribute.

lpxKeyEncKey
If NULL, lpsKey is used directly in PIN Offset creation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used in PIN Offset creation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPSTR lpsOffset;

lpsOffset
Computed PIN Offset.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.

CWA 16926-6:2020 (E)

77

WFS_ERR_PIN_NOPIN PIN has not been entered or has been
cleared.

WFS_ERR_PIN_NOTALLOWED PIN entered by the user is not allowed.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey is not

supported or the length of an encryption key
is not compatible with the encryption
operation required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments The list of ‘forbidden’ PINs (values that cannot be chosen as a PIN, e.g. 1111) is configured in the
device in a vendor dependent way during the configuration of the system. The PINMAXL value
as defined in the IBM 3624 specification is the length of the PIN entered during the
WFS_CMD_PIN_GET_PIN command.

CWA 16926-6:2015 (E)

78

5.1.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the Eurocheque validation algorithm and locally verified for
correctness. The result of the verification is returned to the application. This command will clear
the PIN unless the application has requested that the PIN be maintained through the
WFS_CMD_PIN_MAINTAIN_PIN command.

Input Param LPWFSPINLOCALEUROCHEQUE lpLocalEurocheque;
typedef struct _wfs_pin_local_eurocheque
 {
 LPSTR lpsEurochequeData;
 LPSTR lpsPVV;
 WORD wFirstEncDigits;
 WORD wFirstEncOffset;
 WORD wPVVDigits;
 WORD wPVVOffset;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
 } WFSPINLOCALEUROCHEQUE, *LPWFSPINLOCALEUROCHEQUE;

lpsEurochequeData
Track-3 Eurocheque data.

lpsPVV
PIN Validation Value from track data.

wFirstEncDigits
Number of digits to extract after first encryption.

wFirstEncOffset
Offset of digits to extract after first encryption.

wPVVDigits
Number of digits to extract for PVV.

wPVVOffset
Offset of digits to extract for PVV.

lpsKey
Name of the validation key. The key referenced by lpsKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_USEPINLOCAL attribute.

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). This table is used
to convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPBOOL lpbResult;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.

CWA 16926-6:2020 (E)

79

WFS_ERR_PIN_NOPIN PIN has not been entered or has been
cleared.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey is not
supported or the length of an encryption key
is not compatible with the encryption
operation required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2015 (E)

80

5.1.8 WFS_CMD_PIN_LOCAL_VISA

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the VISA validation algorithm and locally verified for correctness. The
result of the verification is returned to the application. This command will clear the PIN unless the
application has requested that the PIN be maintained through the
WFS_CMD_PIN_MAINTAIN_PIN command.

Input Param LPWFSPINLOCALVISA lpLocalVISA;
typedef struct _wfs_pin_local_visa
 {
 LPSTR lpsPAN;
 LPSTR lpsPVV;
 WORD wPVVDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 } WFSPINLOCALVISA, *LPWFSPINLOCALVISA;

lpsPAN
Primary Account Number from track data, as an ASCII string. lpsPAN should contain the eleven
rightmost digits of the PAN (excluding the check digit), followed by the PVKI indicator in the
12th byte.

lpsPVV
PIN Validation Value from track data, as an ASCII string with characters in the range ‘0’ to ‘9’.
This string should contain 4 digits.

wPVVDigits
Number of digits of PVV.

lpsKey
Name of the validation key. The key referenced by lpsKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_USEPINLOCAL attribute.

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

Output Param LPBOOL lpbResult;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been

cleared.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey is not

supported or the length of an encryption key
is not compatible with the encryption
operation required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

CWA 16926-6:2020 (E)

81

Comments None.

CWA 16926-6:2015 (E)

82

5.1.9 WFS_CMD_PIN_PRESENT_IDC

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the IDC presentation algorithm and presented to the smartcard
contained in the ID card unit. The result of the presentation is returned to the application. This
command will clear the PIN unless the application has requested that the PIN be maintained
through the WFS_CMD_PIN_MAINTAIN_PIN command.

Input Param LPWFSPINPRESENTIDC lpPresentIDC;
typedef struct _wfs_pin_presentidc
 {
 WORD wPresentAlgorithm;
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 LPVOID lpAlgorithmData;
 } WFSPINPRESENTIDC, *LPWFSPINPRESENTIDC;

wPresentAlgorithm
Specifies the algorithm that is used for presentation. Possible values are: (see command
WFS_INF_PIN_CAPABILITIES).

wChipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are: (see
command WFS_INF_IDC_CAPABILITIES in the Identification Card Device Class Interface).

ulChipDataLength
Specifies the length of the byte stream pointed to by lpbChipData.

lpbChipData
Points to the data to be sent to the chip.

lpAlgorithmData
Pointer to a structure that contains the data required for the specified presentation algorithm.
For the WFS_PIN_PRESENT_CLEAR algorithm, this structure is defined as:

typedef struct _wfs_pin_presentclear
 {
 ULONG ulPINPointer;
 USHORT usPINOffset;
 } WFSPINPRESENTCLEAR, *LPWFSPINPRESENTCLEAR;

ulPINPointer
The byte offset where to start inserting the PIN into lpbChipData. The leftmost byte is
numbered zero. See below for an example.

usPINOffset
The bit offset within the byte specified by ulPINPointer where to start inserting the PIN. The
leftmost bit numbered zero. See below for an example.

Output Param LPWFSPINPRESENTRESULT lpPresentResult;
typedef struct _wfs_pin_present_result
 {
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 } WFSPINPRESENTRESULT, *LPWFSPINPRESENTRESULT;

wChipProtocol
Identifies the protocol that was used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure.

ulChipDataLength
Specifies the length of the byte stream pointed to by lpbChipData.

lpbChipData
Points to the data responded from the chip.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

CWA 16926-6:2020 (E)

83

generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The ID card unit is not ready for PIN

presentation or for any vendor specific
reason. The ID card Service Provider, if any,
may have generated a service event that
further describes the reason for that error
code.

WFS_ERR_PIN_NOPIN PIN has not been entered or has been
cleared.

WFS_ERR_PIN_PROTOCOLNOTSUPP The specified protocol is not supported by
the Service Provider.

WFS_ERR_PIN_INVALIDDATA An error occurred while communicating with
the chip.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments Example for the use of the algorithm WFS_PIN_PRESENT_CLEAR:

The structure of a VERIFY command for a French B0 chip is:

Bytes 0 to 4 Bytes 5 to 8

CLA INS A1 A2 Lc PIN block
0xBC 0x20 0x00 0x00 0x04 0xXX 0xXX 0xXX 0xXX

Where the 4 byte PIN block consists of 2 bits that are always zero, 16 bits for the 4 PIN digits
(each digit being coded in 4 bits) and 14 bits that are always one:

Byte 5 Byte 6 Byte 7 Byte 8

0 0 p p p p p p p p p p p p p p p p 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 Digit 1 Digit 2 Digit3 Digit 4

In order to insert the PIN into such a command, the application calls
WFS_CDM_PIN_PRESENT_IDC with:

ulChipDataLength 9
lpbChipData 0xBC2000000400003FFF
ulPINPointer 5
usPINOffset 2

For a sample PIN “1234” the PIN block is:

Byte 5 Byte 6 Byte 7 Byte 8

0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 Digit 1 Digit 2 Digit3 Digit 4

Resulting in a chip card command of:

Bytes 0 to 4 Bytes 5 to 8

CLA INS A1 A2 Lc PIN block
0xBC 0x20 0x00 0x00 0x04 0x04 0x8D 0x3F 0xFF

CWA 16926-6:2015 (E)

84

5.1.10 WFS_CMD_PIN_GET_PINBLOCK

Description This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the formats
specified in the WFS_INF_PIN_CAPABILITIES command. This command will clear the PIN
unless the application has requested that the PIN be maintained through the
WFS_CMD_PIN_MAINTAIN_PIN command.

Input Param LPWFSPINBLOCK lpPinBlock;
typedef struct _wfs_pin_block
 {
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 WORD wFormat;
 LPSTR lpsKey;
 LPSTR lpsKeyEncKey;
 } WFSPINBLOCK, *LPWFSPINBLOCK;

lpsCustomerData
The customer data should be an ASCII string. Used for ANSI, ISO-0, ISO-1, ISO-3 and ISO-4
algorithm to build the formatted PIN. For ANSI ISO-0, ISO-3 and ISO-4 the PAN (Primary
Account Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is
required. If not used a NULL is required.

Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed
as unpacked string, for example: 0123456789ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check
digit), and the CCS (8 digits).

lpsXORData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation. This parameter is a string of
hexadecimal data that must be converted by the application, e.g. 0x0123456789ABCDEF must be
converted to 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45
0x46 and terminated with 0x00. In other words the application would set lpsXORData to
“0123456789ABCDEF\0”. The hex digits 0xA to 0xF can be represented by characters in the
ranges ‘a’ to ‘f’ or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed.
If the formatted PIN is not encrypted twice (i.e. if lpsKeyEncKey is NULL) this parameter is
ignored.

bPadding
Specifies the padding character. The valid range is 0x00 to 0x0F. Only the least significant nibble
is used. This field is ignored for PIN block formats with fixed, sequential or random padding.

wFormat
Specifies the format of the PIN block. Possible values are:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the key used to encrypt the formatted PIN for the first time, NULL if no encryption is
required. If this specifies a double-length or triple-length key, triple DES encryption will be
performed. The key referenced by lpsKey must have the WFS_PIN_USEFUNCTION or
WFS_PIN_USEPINREMOTE attribute. If this specifies an RSA key, RSA encryption will be
performed.

lpsKeyEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required. The key referenced by lpsKeyEncKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_USEPINREMOTE attribute. If this specifies a
double-length or triple-length key, triple DES encryption will be performed.

CWA 16926-6:2020 (E)

85

Output Param LPWFSXDATA lpxPinBlock;

lpxPinBlock
Pointer to the encrypted PIN block.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_NOPIN The PIN has not been entered was not long

enough or has been cleared.
WFS_ERR_PIN_FORMATNOTSUPP The specified format is not supported.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpsKeyEncKey or lpsKey is not

supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

WFS_ERR_PIN_DUKPTOVERFLOW The DUKPT KSN encryption counter has
overflowed to zero. A new IPEK must be
loaded.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
WFS_EXEE_PIN_DUKPT_KSN An lpsKey with

WFS_PIN_USEKEYDERKEY usage has
been used to encrypt the PIN block.

Comments None.

CWA 16926-6:2015 (E)

86

5.1.11 WFS_CMD_PIN_GET_DATA

Description This function is used to return keystrokes entered by the user. It will automatically set the PIN pad
to echo characters on the display if there is a display. For each keystroke an execute notification
event WFS_EXEE_PIN_KEY is sent in order to allow an application to perform the appropriate
display action (i.e. when the PIN pad has no integrated display).

The WFS_EXEE_PIN_ENTERDATA event will be generated when the PIN pad is ready for the
user to start entering data.

When the maximum number of digits is entered and the flag bAutoEnd is true, or a terminate key
is pressed after the minimum number of digits is entered, the command completes. If the
<Cancel> key is a terminator key and is pressed, the command will complete successfully even if
the minimum number of digits has not been entered.

Terminating FDKs can have the functionality of <Enter> (terminates only if minimum length has
been reached) or <Cancel> (can terminate before minimum length is reached). The configuration
of this functionality is vendor specific.

If usMaxLen is zero, the Service Provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

If usMaxLen has been met and bAutoEnd is set to False, then all keys or FDKs that add data to the
contents of the WFSPINDATA output parameter will automatically be disabled. If the CLEAR or
BACKSPACE key is pressed to reduce the number of entered keys below usMaxLen, the same
keys will be re-enabled.

Where applications want direct control of the data entry and the key interpretation, usMaxLen can
be set to zero allowing the application to provide tracking and counting of key presses until a
terminate key or terminate FDK is pressed or WFSCancel has been issued.

The following keys may affect the contents of the WFSPINDATA output parameter but are not
returned in it:

WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE

The WFS_PIN_FK_CANCEL and WFS_PIN_FK_CLEAR keys will cause the output buffer to
be cleared. The WFS_PIN_FK_BACKSPACE key will cause the last key in the buffer to be
removed.

Terminating keys have to be active keys to operate.

It is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

Input Param LPWFSPINGETDATA lpPinGetData;
typedef struct _wfs_pin_getdata
 {
 USHORT usMaxLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
 } WFSPINGETDATA, *LPWFSPINGETDATA;

usMaxLen
Specifies the maximum number of digits which can be returned to the application in the output
parameter.

CWA 16926-6:2020 (E)

87

bAutoEnd
If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. bAutoEnd is ignored when usMaxLen is set to zero.

ulActiveFDKs
Specifies a mask of those FDKs which are active during the execution of the command (see
WFS_INF_PIN_FUNCKEY_DETAIL).

ulActiveKeys
Specifies a mask of those (other) Function Keys which are active during the execution of the
command (see WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateFDKs
Specifies a mask of those FDKs which must terminate the execution of the command (see
WFS_INF_PIN_FUNCKEY_DETAIL).

ulTerminateKeys
Specifies a mask of those (other) Function Keys which must terminate the execution of the
command (see WFS_INF_PIN_FUNCKEY_DETAIL).

Output Param LPWFSPINDATA lpPinData;
typedef struct _wfs_pin_data
 {
 USHORT usKeys;
 LPWFSPINKEY *lpPinKeys;
 WORD wCompletion;
 } WFSPINDATA, *LPWFSPINDATA;

usKeys
Number of keys entered by the user (i.e. number of following WFSPINKEY structures).

lpPinKeys
Pointer to an array of pointers to WFSPINKEY structures that contain the keys entered by the
user (for a description of the WFSPINKEY structure see the definition of the
WFS_EXEE_PIN_KEY event).

wCompletion
Specifies the reason for completion of the entry. Possible values are:
(see command WFS_CMD_PIN_GET_PIN)

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or

FDKs is invalid.
WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or

FDKs is not supported by the Service
Provider.

WFS_ERR_PIN_NOACTIVEKEYS There are no active keys specified, or there is
no defined layout definition.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the PIN pad.
WFS_EXEE_PIN_ENTERDATA The PIN pad is ready for the user to start

entering data.
WFS_EXEE_PIN_LAYOUT The layout has changed position. For ETS

devices only.

Comments If the triple zero key is pressed one WFS_EXEE_PIN_KEY event is sent that contains the
WFS_PIN_FK_000 code and three WFS_PIN_FK_0 elements are added to the output buffer.

If the triple zero key is pressed when 3 keys are already inserted and usMaxLen equals 4 the key is
not accepted and no event is sent to the application.

CWA 16926-6:2015 (E)

88

If the backspace key is pressed after the triple zero key only one zero is deleted out of the output
buffer.

If the double zero key is pressed one WFS_EXEE_PIN_KEY event is sent that contains the
WFS_PIN_FK_00 code and two WFS_PIN_FK_0 elements are added to the output buffer.

If the double zero key is pressed when 3 keys are already inserted and usMaxLen equals 4 the key
is not accepted and no event is sent to the application.

If the backspace key is pressed after the double zero key only one zero is deleted out of the output
buffer.

CWA 16926-6:2020 (E)

89

5.1.12 WFS_CMD_PIN_INITIALIZATION

Description The encryption module must be initialized before any encryption function can be used. Every call
to WFS_CMD_PIN_INITIALIZATION destroys all application keys that have been loaded or
imported; it does not affect those keys loaded during manufacturing.

Usually this command is called by an operator task and not by the application program. Public
keys imported under the RSA Signature based remote key loading scheme when public key
deletion authentication is required will not be affected. However, if this command is requested in
authenticated mode, public keys that require authentication for deletion will be deleted. This
includes public keys imported under either the RSA Signature based remote key loading scheme
or the TR34 RSA Certificate based remote key loading scheme.

Initialization also involves loading “initial” application keys and local vendor dependent keys.
These can be supplied, for example, by an operator through a keyboard, a local configuration file,
remote RSA key management or possibly by means of some secure hardware that can be attached
to the device. The application “initial” keys would normally get updated by the application during
a WFS_CMD_PIN_IMPORT_KEY command as soon as possible. Local vendor dependent static
keys (e.g. storage, firmware and offset keys) would normally be transparent to the application and
by definition cannot be dynamically changed.

Where initial keys are not available immediately when this command is issued (i.e. when operator
intervention is required), the Service Provider returns WFS_ERR_PIN_ACCESSDENIED and the
application must await the WFS_SRVE_PIN_INITIALIZED event.

During initialization an optional encrypted ID key can be stored in the HW module. The ID key
and the corresponding encryption key can be passed as parameters; if not, they are generated
automatically by the encryption module. The encrypted ID is returned to the application and
serves as authorization for the key import function. The WFS_INF_PIN_CAPABILITIES
command indicates whether or not the device will support this feature.

This function also resets the HSM terminal data, except session key index and trace number.

This function resets all certificate data and authentication public/private keys back to their initial
states at the time of production (except for those public keys imported under the RSA Signature
based remote key loading scheme when public key deletion authentication is required). Key-pairs
created with WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR are deleted. Any keys installed
during production, which have been permanently replaced, will not be reset. Any Verification
certificates that may have been loaded must be reloaded. The Certificate state will remain the
same, but the WFS_CMD_PIN_LOAD_CERTIFICATE or
WFS_CMD_PIN_REPLACE_CERTIFICATE commands must be called again.

When multiple ZKA HSMs are present, this command deletes all keys loaded within all ZKA
logical HSMs.

Input Param LPWFSPININIT lpInit;
typedef struct _wfs_pin_init
 {
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxKey;
 } WFSPININIT, *LPWFSPININIT;

lpxIdent
Pointer to the value of the ID key. NULL if not required.

lpxKey
Pointer to the value of the encryption key. NULL if not required.

Output Param LPWFSXDATA lpxIdentification;

lpxIdentification
Pointer to the value of the ID key encrypted by the encryption key. This value can be used as
authorization for the WFS_CMD_PIN_IMPORT_KEY command, but can be NULL if no
authorization required.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

CWA 16926-6:2015 (E)

90

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized (or not ready for some vendor
specific reason).

WFS_ERR_PIN_INVALIDID The ID passed was not valid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_INITIALIZED The encryption module is now initialized.
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2020 (E)

91

5.1.13 WFS_CMD_PIN_LOCAL_BANKSYS
Description The PIN block previously built by the WFS_CMD_PIN_GET_PINBLOCK command is sent to

the BANKSYS security control module using the WFS_CMD_PIN_BANKSYS_IO command.
The BANKSYS security control module will return an ATMVAC code, which is then used in this
command to locally validate the PIN. The key referenced by lpsKey within the most recent
successful WFS_CMD_PIN_GET_PINBLOCK command is reused by the
WFS_CMD_PIN_LOCAL_BANKSYS command for the local validation.

Input Param LPWFSPINLOCALBANKSYS lpLocalBanksys;
typedef struct _wfs_pin_local_banksys
 {
 LPWFSXDATA lpxATMVAC;
 } WFSPINLOCALBANKSYS, *LPWFSPINLOCALBANKSYS;

lpxATMVAC
The ATMVAC code calculated by the BANKSYS Security Control Module.

Output Param LPBOOL lpbResult;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared
without building the Banksys PIN block.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxATMVAC is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2015 (E)

92

5.1.14 WFS_CMD_PIN_BANKSYS_IO

Description This command sends a single command to the Banksys Security Control Module.

Input Param LPWFSPINBANKSYSIO lpBanksysIoIn;
typedef struct _wfs_pin_banksys_io
 {
 ULONG ulLength;
 LPBYTE lpbData;
 } WFSPINBANKSYSIO, *LPWFSPINBANKSYSIO;

ulLength
Specifies the length of the following field lpbData.

lpbData
Points to the data sent to the BANKSYS Security Control Module.

Output Param LPWFSPINBANKSYSIO lpBanksysIoOut;
typedef struct _wfs_pin_banksys_io
 {
 ULONG ulLength;
 LPBYTE lpbData;
 } WFSPINBANKSYSIO, *LPWFSPINBANKSYSIO;

ulLength
Specifies the length of the following field lpbData.

lpbData
Points to the data responded by the BANKSYS Security Control Module.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_INVALIDDATA An error occurred while communicating with

the device.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments The Banksys command and response message data are defined in [Ref. 18].

CWA 16926-6:2020 (E)

93

5.1.15 WFS_CMD_PIN_RESET

Description Sends a service reset to the Service Provider.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a
known good condition. It does not delete any keys.

CWA 16926-6:2015 (E)

94

5.1.16 WFS_CMD_PIN_HSM_SET_TDATA

Description This function allows the application to set the HSM terminal data (except keys, trace number and
session key index). The data must be provided as a series of “tag/length/value” items.

Terminal data that are set but are not supported by the hardware will be ignored.

Input Param LPWFSXDATA lpxTData;

lpxTData
Specifies which parameter(s) is(are) to be set. lpxTData is a series of “tag/length/value” items
where each item consists of:

• One byte tag (see the list of tags below).

• One byte specifying the length of the following data as an unsigned binary number.

• N bytes data (see the list below for formatting) with no separators.

The following tags are supported:

Tag
(hexl)

Format Length
(bytes)

Meaning Read /
Write

EPP /
HSM

C2 BCD 4 Terminal ID
ISO BMP 41

R/W EPP

C3 BCD 4 Bank code
ISO BMP 42 (rightmost 4 bytes)

R/W EPP

C4 BCD 9 Account data for terminal account
ISO BMP 60 (load against other card)

R/W EPP

C5 BCD 9 Account data for fee account
ISO BMP 60 ("Laden vom
Kartenkonto")

R/W EPP

C6 EBCDIC 40 Terminal location
ISO BMP 43

R/W EPP

C7 ASCII 3 Terminal currency R/W EPP
C8 BCD 7 Online date and time

(YYYYMMDDHHMMSS)
ISO BMP 61

R/W HSM

C9 BCD 4 Minimum load fee in units of 1/100 of
terminal currency, checked against
leftmost 4 Bytes of ISO BMP42

R/W EPP

CA BCD 4 Maximum load fee in units of 1/100 of
terminal currency, checked against
leftmost 4 Bytes of ISO BMP42

R/W EPP

CB BIN 3 logical HSM binary coded serial
number (starts with 1; 0 means that
there are no logical HSMs)

R HSM

CC EBCDIC 16 ZKA ID (is filled during the pre-
initialization of the HSM)

R HSM

CD BIN 1 HSM status
1 = irreversibly out of order
2 = out of order, K_UR is not loaded
3 = not pre-initialized, K_UR is loaded
4 = pre-initialized, K_INIT is loaded
5 = initialized/personalized, K_PERS is
loaded

R HSM

CE EBCDIC variable,
min. 16

HSM-ID (6 byte Manufacturer- ID +
min. 10 Byte serial number), as needed
for ISO BMP57 of a pre-initialization

R EPP

In the table above, the fifth column indicates if the variable is read only or both read and write.
The sixth column indicates if the variable is unique per logical HSM or common across all logical
HSMs within an EPP.

Output Param None.

CWA 16926-6:2020 (E)

95

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle
this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_HSM_TDATA_CHANGED The terminal data has changed.

Comments None.

CWA 16926-6:2015 (E)

96

5.1.17 WFS_CMD_PIN_SECURE_MSG_SEND

Description This command handles all messages that should be sent through a secure messaging to an
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module adds the security relevant fields to the message and returns the modified message in the
output structure. All messages must be presented to the encryptor via this command even if they
do not contain security fields in order to keep track of the transaction status in the internal state
machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;
typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
 } WFSPINSECMSG, *LPWFSPINSECMSG;

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization

system.
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German

"Ladezentrale".
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalization

system.
WFS_PIN_PROTCHIPZKA ZKA chip protocol.
WFS_PIN_PROTRAWDATA Raw data protocol.
WFS_PIN_PROTPBM PBM protocol (see [Ref. 8] –[Ref. 13])
WFS_PIN_PROTHSMLDI HSM LDI protocol.
WFS_PIN_PROTGENAS Generic PAC/MAC for non-ISO8583

message formats.
WFS_PIN_PROTCHIPINCHG ZKA chip protocol for changing the PIN on

a GeldKarte.
WFS_PIN_PROTPINCMP Protocol for comparing PIN numbers entered

in the PIN pad during a PIN Change
transaction.

WFS_PIN_PROTISOPINCHG ISO8583 authorization system protocol for
changing the PIN on a GeldKarte.

ulLength
Specifies the length in bytes of the message in lpbMsg. This parameter is ignored for the
WFS_PIN_PROTHSMLDI protocol.

lpbMsg
Specifies the message that should be send. This parameter is ignored for the
WFS_PIN_PROTHSMLDI protocol.

Output Param LPWFSPINSECMSG lpSecMsgOut;

lpSecMsgOut
pointer to a WFSPINSECMSG structure that contains the modified message that can now be send
to an authorization system, German "Ladezentrale", personalization system or the chip.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle
this message.

WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.

CWA 16926-6:2020 (E)

97

WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant

fields are invalid.
WFS_ERR_PIN_KEYNOTFOUND No key was found for PAC/MAC

generation.
WFS_ERR_PIN_NOPIN No PIN or insufficient PIN-digits have been

entered.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-6:2015 (E)

98

5.1.18 WFS_CMD_PIN_SECURE_MSG_RECEIVE

Description This command handles all messages that are received through a secure messaging from an
authorization system, German "Ladezentrale", personalization system or the chip. The encryption
module checks the security relevant fields. All messages must be presented to the encryptor via
this command even if they do not contain security relevant fields in order to keep track of the
transaction status in the internal state machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;
typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
 } WFSPINSECMSG, *LPWFSPINSECMSG;

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization

system.
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German

"Ladezentrale".
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalization

system.
WFS_PIN_PROTCHIPZKA ZKA chip protocol.
WFS_PIN_PROTRAWDATA Raw data protocol.
WFS_PIN_PROTPBM PBM protocol (see [Ref. 8] – [Ref. 13]).
WFS_PIN_PROTGENAS Generic PAC/MAC for non-ISO8583

message formats.
WFS_PIN_PROTCHIPINCHG ZKA chip protocol for changing the PIN on

a GeldKarte.
WFS_PIN_PROTPINCMP Protocol for comparing PIN numbers entered

in the PIN pad during a PIN Change
transaction.

WFS_PIN_PROTISOPINCHG ISO8583 authorization system protocol for
changing the PIN on a GeldKarte.

ulLength
Specifies the length in bytes of the message in lpbMsg.

lpbMsg
Specifies the message that was received. This value can be NULL if during a specified time
period no response was received from the communication partner (necessary to set the internal
state machine to the correct state).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle
this message.

WFS_ERR_PIN_MACINVALID The MAC of the message is not correct.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant

fields are invalid.
WFS_ERR_PIN_KEYNOTFOUND No key was found for MAC verification.

CWA 16926-6:2020 (E)

99

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_HSM_TDATA_CHANGED The terminal data has changed.

Comments None.

CWA 16926-6:2015 (E)

100

5.1.19 WFS_CMD_PIN_GET_JOURNAL

Description This command is used to get journal data from the encryption module. It retrieves
cryptographically secured information about the result of the last transaction that was done with
the indicated protocol. When the Service Provider supports journaling (see Capabilities) then it is
impossible to do any WFS_CMD_PIN_SECURE_MSG_SEND/RECEIVE with this protocol,
unless the journal data is retrieved. It is possible - especially after restarting a system - to get the
same journal data again.

Input Param LPWORD lpwProtocol;

lpwProtocol
Specifies the protocol the journal data belong to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS Get authorization system journal data.
WFS_PIN_PROTISOLZ Get German "Ladezentrale" journal data.
WFS_PIN_PROTISOPS Get personalization system journal data.
WFS_PIN_PROTPBM Get PBM protocol data.

Output Param LPWFSXDATA lpxJournalData;

lpxJournalData
Pointer to the journal data.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to return
journal data.

WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-6:2020 (E)

101

5.1.20 WFS_CMD_PIN_IMPORT_KEY_EX

Description The encryption key in the secure key buffer or passed by the application is loaded in the
encryption module. The key can be passed in clear text mode or encrypted with an accompanying
"key encryption key". The dwUse parameter is needed to separate the keys in several parts of the
encryption module to avoid the manipulation of a key. A key can be loaded in multiple
unencrypted parts by combining the WFS_PIN_USECONSTRUCT or
WFS_PIN_USESECURECONSTRUCT value with the final usage flag within the dwUse field.

If the WFS_PIN_USECONSTRUCT flag is used then the application must provide the key data
through the lpxValue parameter, If WFS_PIN_USESECURECONSTRUCT is used then the
encryption key part in the secure key buffer previously populated with the
WFS_CMD_PIN_SECUREKEY_ENTRY command is used and lpxValue is ignored. Key parts
loaded with the WFS_PIN_USESECURECONSTRUCT flag can only be stored once as the
encryption key in the secure key buffer is no longer available after this command has been
executed. The WFS_PIN_USECONSTRUCT and WFS_PIN_USESECURECONSTRUCT
construction flags cannot be used in combination.

Input Param LPWFSPINIMPORTKEYEX lpImportKeyEx;
typedef struct _wfs_pin_import_key_ex
 {
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxControlVector;
 DWORD dwUse;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
 } WFSPINIMPORTKEYEX, *LPWFSPINIMPORTKEYEX;

lpsKey
Specifies the name of key being loaded.

lpsEncKey
lpsEncKey specifies a key name which was used to encrypt (in ECB mode) the key string passed
in lpxValue. If lpsEncKey is NULL the key is loaded directly into the encryption module.
lpsEncKey must be NULL if dwUse contains WFS_PIN_USECONSTRUCT or
WFS_PIN_USESECURECONSTRUCT.

lpxValue
Specifies the value of key to be loaded. If it is an RSA key the first 4 bytes contain the exponent
and the following 128 the modulus.

lpxControlVector
Specifies the control vector of the key to be loaded. It contains the attributes of the key. If this
parameter is NULL the keys is only specified by dwUse. See also [Ref. 26].

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key is used for encryption and decryption.
WFS_PIN_USEFUNCTION Key is used for PIN block creation.
WFS_PIN_USEMACING Key is used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USEPINLOCAL Key is used only for local PIN check.
WFS_PIN_USERSAPUBLIC Key is used as a public key for RSA

encryption including EMV PIN block
creation.

WFS_PIN_USERSAPRIVATE Key is used as a private key for RSA
decryption (it is not recommended that
private keys are imported with this function).

CWA 16926-6:2015 (E)

102

WFS_PIN_USECONSTRUCT Key is under construction through the import
of multiple parts. This value is used in
combination with one of the other key usage
flags.

WFS_PIN_USESECURECONSTRUCT Key is under construction through the import
of multiple parts. This value is used in
combination with one of the other key usage
flags. lpxValue is ignored as the encryption
key part is taken from the secure key buffer.

WFS_PIN_USEANSTR31MASTER Key can be used for importing keys
packaged within an ANS TR-31 key block.
This key usage can only be combined with
WFS_PIN_USECONSTRUCT and
WFS_PIN_USESECURECONSTRUCT.

WFS_PIN_USEPINREMOTE Key is used only for PIN block creation.
WFS_PIN_USERESTRICTEDKEYENCKEY Key is used as

WFS_PIN_USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN_USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value Meaning
WFS_PIN_KCVNONE There is no key check value verification

required.
WFS_PIN_KCVSELF The key check value (KCV) is created by an

encryption of the key with itself. For the
description refer to the
WFS_PIN_KCVSELF literal described in
the Capabilities.

WFS_PIN_KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key. Unless
otherwise specified, ECB encryption is used.
The encryption algorithm used (i.e. DES,
3DES, AES) is determined by the type of
key used to generate the KCV.

lpxKeyCheckValue
Specifies a check value to verify that the value of the imported key is correct. It can be NULL, if
no key check value verification is required and wKeyCheckMode equals WFS_PIN_KCVNONE.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not

found or attempting to delete a non-existent
key.

WFS_ERR_PIN_ACCESSDENIED The encryption module is either not
initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

CWA 16926-6:2020 (E)

103

WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not
loaded.

WFS_ERR_PIN_USEVIOLATION The specified use conflicts with a previously
for the same key specified one.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported or
the encryption key in the secure key buffer is
invalid (or has not been entered) or the
length of an encryption key is not compatible
with the encryption operation required.

WFS_ERR_PIN_KEYINVALID The key value is invalid. The key check
value verification failed.

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments When keys are loaded in multiple parts, all parts of the key loaded must set the relevant
construction value in the dwUse field along with any usages needed for the final key use. The
usage flag must be consistent for all parts of the key. Activation of a key entered in multiple parts
is indicated through an additional final call to this command, where the construction flag is
removed from dwUse but those other usages defined during the key part loading must still be
used. No key data is passed during the final activation of the key. A
WFS_ERR_PIN_ACCESSDENIED error will be returned if the key cannot be activated, e.g. if
only one key part has been entered.

When a construction flag is set, the optional KCV applies to the key part being imported. If the
KVC provided for a key part fails verification, the key part will not be accepted. When the key is
being activated, the optional KCV applies to the complete key already stored. If the KVC
provided during activation fails verification, the key will not be activated.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a dwUse value that indicates it is under construction,
it cannot be used for cryptographic functions.

CWA 16926-6:2015 (E)

104

5.1.21 WFS_CMD_PIN_ENC_IO

Description This command is used to communicate with the encryption module. Transparent data is sent from
the application to the encryption module and the response is returned transparently to the
application.

This command is used to add support for country-specific protocols.

Input Param LPWFSPINENCIO lpEncIoIn;
typedef struct _wfs_pin_enc_io
 {
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
 } WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module. The following
protocol numbers are defined:

Value Meaning
WFS_PIN_ENC_PROT_CH For Swiss specific protocols. The document

specification for Swiss specific protocols is
"CMD_ENC_IO - CH Protocol.doc". This
document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management
Hertistrasse 27
CH-8304 Wallisellen

WFS_PIN_ENC_PROT_GIECB Protocol for “Groupement des Cartes
Bancaires” (France).

WFS_PIN_ENC_PROT_LUX Protocol for Luxemburg commands. The
reference for this specific protocol is the
Authorization Center in Luxemburg
(CETREL.)
Cryptography Management
Postal address:
CETREL Société Coopérative
Centre de Transferts Electroniques
L-2956 Luxembourg

WFS_PIN_ENC_PROT_CHN Protocol for China commands. The reference
for this specific protocol are the Financial
industry standard of the People’s Republic of
China PBOC3.0 JR/T 0025 [Ref. 44] and the
Password industry standard of the People's
Republic of China GM/T 0003, GM/T 0004
[Ref. 43].

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a structure containing the data to be sent to the encryption module. This structure
depends on the wProtocol field where each protocol may contain a different structure.

Output Param LPWFSPINENCIO lpEncIoOut;
typedef struct _wfs_pin_enc_io
 {
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
 } WFSPINENCIO, *LPWFSPINENCIO;

CWA 16926-6:2020 (E)

105

wProtocol
Identifies the protocol that is used to communicate with the encryption module. This field
contains the same value as the corresponding field in the input structure.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a structure containing the data responded by the encryption module.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_PROTOCOLNOTSUPP The specified protocol is not supported by

the Service Provider. For wProtocol=
WFS_PIN_ENC_PROT_GIECB.

WFS_ERR_PIN_RANDOMINVALID The encrypted random number in the input
data does not decrypt to the one previously
provided by the EPP.

WFS_ERR_PIN_SIGNATUREINVALID The signature in the input data is invalid.
WFS_ERR_PIN_SNSCDINVALID The SCD serial number in the input data is

invalid.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle

this command.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
WFS_ERR_PIN_KEYINVALID The key value is invalid.
WFS_ERR_PIN_KEY_GENERATION_ERROR

The EPP is unable to generate a key pair.

Events None.

Comments For the WFS_PIN_ENC_PROT_CH, WFS_PIN_ENC_PROT_LUX and the
WFS_PIN_ENC_PROT_CHN protocols, the WFS_CMD_PIN_ENC_IO command only returns
generic error codes. Protocol specific error codes will be returned by the hResult within the output
data.

CWA 16926-6:2015 (E)

106

5.1.22 WFS_CMD_PIN_HSM_INIT

Description This command is used to set the HSM out of order. If multiple logical HSMs are configured then
the command sets the currently active logical HSM out of order. At the same time the online time
can be set to control when the OPT online dialog (see WFS_PIN_PROTISOPS protocol) shall be
started to initialize the HSM again. When this time is reached a
WFS_SRVE_PIN_OPT_REQUIRED event will be sent.

Input Param LPWFSPINHSMINIT lpHsmInit;
typedef struct _wfs_pin_hsm_init
 {
 WORD wInitMode;
 LPWFSXDATA lpxOnlineTime;
 } WFSPINHSMINIT, *LPWFSPINHSMINIT

wInitMode
Specifies the init mode as one of the following flags:

Value Meaning
WFS_PIN_INITTEMP Initialize the HSM temporarily (K_UR

remains loaded).
WFS_PIN_INITDEFINITE Initialize the HSM definitely (K_UR is

deleted).
WFS_PIN_INITIRREVERSIBLE Initialize the HSM irreversibly (can only be

restored by the vendor).

lpxOnlineTime
Specifies the Online date and time in the format YYYYMMDDHHMMSS like in ISO BMP 61 as
BCD packed characters. This parameter is ignored when the init mode equals
WFS_PIN_INITDEFINITE or WFS_PIN_INITIRREVERSIBLE. If this parameter is NULL,
ulLength is zero or the value is 0x00 0x00 0x00 0x00 0x00 0x00 0x00 the online time will be set
to a value in the past.

Output Param None.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_MODENOTSUPPORTED The specified init mode is not supported.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle

this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_HSM_TDATA_CHANGED The terminal data has changed.

Comments None.

CWA 16926-6:2020 (E)

107

5.1.23 WFS_CMD_PIN_SECUREKEY_ENTRY

Description This command allows a full length symmetric encryption key part to be entered directly into the
PIN pad without being exposed outside of the PIN pad. From the point this function is invoked,
encryption key digits (WFS_PIN_FK_0 to WFS_PIN_FK_9 and WFS_PIN_FK_A to
WFS_PIN_FK_F) are not passed to the application. For each encryption key digit, or any other
active key entered (except for shift), an execute notification event WFS_EXEE_PIN_KEY is sent
in order to allow an application to perform the appropriate display action (i.e. when the PIN pad
has no integrated display). When an encryption key digit is entered the application is not informed
of the value entered, instead zero is returned.

The WFS_EXEE_PIN_ENTERDATA event will be generated when the PIN pad is ready for the
user to start entering data.

The keys that can be enabled by this command are defined by the lpFuncKeyDetail parameter of
the WFS_INF_PIN_SECUREKEY_DETAIL command. Function keys which are not associated
with an encryption key digit may be enabled but will not contribute to the secure entry buffer
(unless they are Cancel, Clear or Backspace) and will not count towards the length of the key
entry. The Cancel and Clear keys will cause the encryption key buffer to be cleared. The
Backspace key will cause the last encryption key digit in the encryption key buffer to be removed.

If bAutoEnd is TRUE the command will automatically complete when the required number of
encryption key digits have been added to the buffer.

If bAutoEnd is FALSE then the command will not automatically complete and Enter, Cancel or
any terminating key must be pressed. When usKeyLen hex encryption key digits have been
entered then all encryption key digits keys are disabled. If the Clear or Backspace key is pressed
to reduce the number of entered encryption key digits below usKeyLen, the same keys will be re-
enabled.

Terminating keys have to be active keys to operate.

If an FDK is associated with Enter, Cancel, Clear or Backspace then the FDK must be activated to
operate. The Enter and Cancel FDKs must also be marked as a terminator if they are to terminate
entry. These FDKs are reported as normal FDKs within the WFS_EXEE_PIN_KEY event,
applications must be aware of those FDKs associated with Cancel, Clear, Backspace and Enter
and handle any user interaction as required. For example, if the WFS_PIN_FK_FDK01 is
associated with Clear, then the application must include the WFS_PIN_FK_FDK01 FDK code in
the ulActiveFDKs parameter (if the clear functionality is required). In addition when this FDK is
pressed the WFS_EXEE_PIN_KEY event will contain the WFS_PIN_FK_FDK01 mask value in
the ulDigit field. The application must update the user interface to reflect the effect of the clear on
the encryption key digits entered so far.

On some devices that are configured as either WFS_PIN_SECUREKEY_REG_UNIQUE or
WFS_PIN_SECUREKEY_IRREG_UNIQUE all the function keys on the PIN pad will be
associated with hex digits and there may be no FDKs available either. On these devices there may
be no way to correct mistakes or cancel the key encryption entry before all the encryption key
digits are entered, so the application must set the bAutoEnd flag to TRUE and wait for the
command to auto-complete. Applications should check the KCV to avoid storing an incorrect key
component.

Encryption key parts entered with this command are stored through either the
WFS_CMD_PIN_IMPORT_KEY or WFS_CMD_PIN_IMPORT_KEY_EX. Each key part can
only be stored once after which the secure key buffer will be cleared automatically.

Input Param LPWFSPINSECUREKEYENTRY lpSecureKeyEntry;
typedef struct _wfs_pin_secure_key_entry
 {
 USHORT usKeyLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
 WORD wVerificationType;
 } WFSPINSECUREKEYENTRY, *LPWFSPINSECUREKEYENTRY;

CWA 16926-6:2015 (E)

108

usKeyLen
Specifies the number of digits which must be entered for the encryption key. For example, 16 for
a single-length key, 32 for a double-length key and 48 for a triple-length key.

bAutoEnd
If bAutoEnd is set to true, the Service Provider terminates the command when the maximum
number of encryption key digits are entered. Otherwise, the input is terminated by the user using
Enter, Cancel or any terminating key. When usKeyLen is reached, the Service Provider will
disable all keys associated with an encryption key digit.

ulActiveFDKs
Specifies those FDKs which are active during the execution of the command. This parameter
should include those FDKs mapped to edit functions.

ulActiveKeys
Specifies all Function Keys(not FDKs) which are active during the execution of the command.
This should be the complete set or a subset of the keys returned in the lpFuncKeyDetail parameter
of the WFS_INF_PIN_SECUREKEY_DETAIL command. This should include WFS_PIN_FK_0
to WFS_PIN_FK_9 and WFS_PIN_FK_A to WFS_PIN_FK_F for all modes of secure key entry,
but should also include WFS_PIN_FK_SHIFT on shift based systems. The WFS_PIN_FK_00,
WFS_PIN_FK_000 and WFS_PIN_FK_DECPOINT function keys must not be included in the
list of active or terminate keys.

ulTerminateFDKs
Specifies those FDKs which must terminate the execution of the command. This should include
the FDKs associated with Cancel and Enter.

ulTerminateKeys
Specifies those all Function Keys (not FDKs) which must terminate the execution of the
command. This does not include the FDKs associated with Enter or Cancel.

wVerificationType
Specifies the type of verification to be done on the entered key. Possible values are as follows:

Value Meaning
WFS_PIN_KCVSELF The key check value (KCV) is created by an

encryption of the key with itself. For the
description refer to the
WFS_PIN_KCVSELF literal described in
the Capabilities.

WFS_PIN_KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key. Unless
otherwise specified, ECB encryption is used.
The encryption algorithm used (i.e. DES,
3DES, AES) is determined by the type of
key used to generate the KCV.

If one of the following flags is not included, usKeyLen will determine the cryptographic method
used. If usKeyLen is 16, the cryptographic method will be Single DES. If usKeyLen is 32 or 48,
the cryptographic method will be Triple DES:

Value Meaning
WFS_PIN_KCV_DES Single DES.
WFS_PIN_KCV_3DES Triple DES.
WFS_PIN_KCV_AES AES.

Output Param LPWFSPINSECUREKEYENTRYOUT lpSecureKeyEntryOut;
typedef struct _wfs_pin_secure_key_entry_out
 {
 USHORT usDigits;
 WORD wCompletion;
 LPWFSXDATA lpxKCV;
 } WFSPINSECUREKEYENTRYOUT, *LPWFSPINSECUREKEYENTRYOUT;

usDigits
Specifies the number of key digits entered. Applications must ensure all required digits have been
entered before trying to store the key.

CWA 16926-6:2020 (E)

109

wCompletion
Specifies the reason for completion of the entry. Possible values are described in
WFS_CMD_PIN_GET_PIN.

lpxKCV
Contains the key check value data that can be used for verification of the entered key. This
parameter is NULL if device does not have this capability, or the key entry was not fully entered,
e.g. the entry was terminated by Enter before the required number of digits was entered.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or
FDKs is invalid.

WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or
FDKs is not supported by the Service
Provider.

WFS_ERR_PIN_NOACTIVEKEYS There are no active function keys specified,
or there is no defined layout definition.

WFS_ERR_PIN_NOTERMINATEKEYS There are no terminate keys specified and
bAutoEnd is FALSE.

WFS_ERR_PIN_INVALIDKEYLENGTH The usKeyLen key length is not supported.
WFS_ERR_PIN_MODENOTSUPPORTED The KCV mode is not supported.
WFS_ERR_PIN_TOOMANYFRAMES The device requires that only one frame is

used for this command.
WFS_ERR_PIN_PARTIALFRAME The single Touch Frame does not cover the

entire monitor.
WFS_ERR_PIN_MISSINGKEYS The single frame does not contain a full set

of hexadecimal key definitions.
WFS_ERR_PIN_ENTRYTIMEOUT The timeout for entering data has been

reached. This is a timeout which may be due
to hardware limitations or legislative
requirements (for example PCI).

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the PIN pad.

Applications must be aware of the
association between FDKs and the edit
functions reported within the
WFS_INF_PIN_SECUREKEY_DETAIL
command.

WFS_EXEE_PIN_ENTERDATA The PIN pad is ready for the user to start
entering data.

WFS_EXEE_PIN_LAYOUT The layout has changed position. For ETS
devices only.

Comments None.

CWA 16926-6:2015 (E)

110

5.1.24 WFS_CMD_PIN_GENERATE_KCV

Description This command returns the Key Check Value (KCV) for the specified key.

Input Param LPWFSPINGENERATEKCV lpGenerateKCV;
typedef struct _wfs_pin_generate_KCV
 {
 LPSTR lpsKey;
 WORD wKeyCheckMode;
 } WFSPINGENERATEKCV, *LPWFSPINGENERATEKCV;

lpsKey
Specifies the name of key that should be used to generate the KCV.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value Meaning
WFS_PIN_KCVSELF The key check value (KCV) is created by an

encryption of the key with itself. For the
description refer to the
WFS_PIN_KCVSELF literal described in
the Capabilities.

WFS_PIN_KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key. Unless
otherwise specified, ECB encryption is used.
The encryption algorithm used (i.e. DES,
3DES, AES) is determined by the type of
key used to generate the KCV.

Output Param LPWFSPINKCV lpKCV;
typedef struct _wfs_pin_kcv
 {
 LPWFSXDATA lpxKCV;
 } WFSPINKCV, *LPWFSPINKCV;

lpxKCV
Contains the key check value data that can be used for verification of the key.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not

found.
WFS_ERR_PIN_KEYNOVALUE The specified key exists but has no value

loaded.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_MODENOTSUPPORTED The KCV mode is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2020 (E)

111

5.1.25 WFS_CMD_PIN_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the PIN guidance lights. This includes defining the flash
rate, the color and the direction. When an application tries to use a color or direction that is not
supported then the Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

Input Param LPWFSPINSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_pin_set_guidlight
{
 WORD wGuidLight;
 DWORD dwCommand;
} WFSPINSETGUIDLIGHT, *LPWFSPINSETGUIDLIGHT;

wGuidLight
Specifies the index of the guidance light to set as one of the values defined within the capabilities
section:

dwCommand
Specifies the state of the guidance light indicator as WFS_PIN_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, optionally one type C and optionally
one type D. If no value of type C is specified then the default color is used. The Service Provider
determines which color is used as the default color.

Value Meaning Type
WFS_PIN_GUIDANCE_OFF The light indicator is turned off. A
WFS_PIN_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.
WFS_PIN_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.
WFS_PIN_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.
WFS_PIN_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).
WFS_PIN_GUIDANCE_RED The light indicator color is set C

to red.
WFS_PIN_GUIDANCE_GREEN The light indicator color is set to C

green.
WFS_PIN_GUIDANCE_YELLOW The light indicator color is set to C

yellow.
WFS_PIN_GUIDANCE_BLUE The light indicator color is set to C

blue.
WFS_PIN_GUIDANCE_CYAN The light indicator color is set to C

cyan.
WFS_PIN_GUIDANCE_MAGENTA The light indicator color is set to C

magenta.
WFS_PIN_GUIDANCE_WHITE The light indicator color is set to C

white.
WFS_PIN_GUIDANCE_ENTRY The light indicator is set D

to the entry state.
WFS_PIN_GUIDANCE_EXIT The light indicator is set D

to the exit state.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light
does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments Guidance light support was added into the PIN primarily to support guidance lights for

CWA 16926-6:2015 (E)

112

workstations where more than one instance of a PIN is present. The original SIU guidance light
mechanism was not able to manage guidance lights for workstations with multiple PINs. This
command can also be used to set the status of the PIN guidance lights when only one instance of a
PIN is present.
The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

CWA 16926-6:2020 (E)

113

5.1.26 WFS_CMD_PIN_MAINTAIN_PIN

Description This command is used to control if the PIN is maintained after a PIN processing command for
subsequent use by other PIN processing commands. This command is also used to clear the PIN
buffer when the PIN is no longer required.

Input Param LPWFSPINMAINTAINPIN lpMaintainPinIn;
typedef struct _wfs_pin_maintain_pin
 {
 BOOL bMaintainPIN;
 } WFSPINMAINTAINPIN, *LPWFSPINMAINTAINPIN;

bMaintainPIN
Specifies if the PIN should be maintained after a PIN processing command. Once set, this setting
applies until changed through another call to this command. This value is not persistent across
reboots.

Value Meaning
TRUE The PIN should be maintained after PIN

processing commands for multiple uses.
FALSE The PIN will be cleared and subsequent

PINs will not be maintained for multiple
uses.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments When using this command to maintain a PIN for multiple transactions/PIN processing commands,
applications should ensure that a customer’s PIN is cleared after they have completed all their
transactions. The PIN is cleared by calling this command with bMaintainPIN set to FALSE.

CWA 16926-6:2015 (E)

114

5.1.27 WFS_CMD_PIN_KEYPRESS_BEEP

Description This command is used to enable or disable the PIN device from emitting a beep tone on
subsequent key presses of active or in-active keys. This command is valid only on devices which
have the capability to support application control of automatic beeping. See
WFS_INF_PIN_CAPABILITIES structure for information.

Input Param LPWORD lpwMode;

lpwMode
Specifies whether automatic generation of key press beep tones should be activated for any active
or in-active key subsequently pressed on the PIN. lpwMode selectively turns beeping on and off
for active, in-active or both types of keys. lpwMode contains a combination of the following flags:

Value Meaning
WFS_PIN_BEEP_ON_ACTIVE Specifies that beeping should be enabled for

active keys. If this flag is not present then
beeping is disabled for active keys.

WFS_PIN_BEEP_ON_INACTIVE Specifies that beeping should be enabled for
in-active keys. If this flag is not present then
beeping is disabled for in-active keys.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-6:2020 (E)

115

5.1.28 WFS_CMD_PIN_SET_PINBLOCK_DATA

Description This function should be used for devices which need to know the data for the PIN block before
the PIN is entered by the user. WFS_CMD_PIN_GET_PIN and
WFS_CMD_PIN_GET_PINBLOCK should be called after this command. For all other devices
WFS_ERR_UNSUPP_COMMAND will be returned here.

If this command is required and it is not called, the WFS_CMD_PIN_GET_PIN command will
fail with the generic error WFS_ERR_SEQUENCE_ERROR.

If the input parameters passed to this command and WFS_CMD_PIN_GET_PINBLOCK are not
identical, the WFS_CMD_PIN_GET_PINBLOCK command will fail with the generic error
WFS_ERR_INVALID_DATA.

The data associated with this command will be cleared on a WFS_CMD_PIN_GET_PINBLOCK
command.

Input Param LPWFSPINBLOCK lpPinSetBlockData;

See WFS_CMD_PIN_GET_PINBLOCK for details.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_FORMATNOTSUPP The specified format is not supported.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpsKeyEncKey or lpsKey is not

supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2015 (E)

116

5.1.29 WFS_CMD_PIN_SET_LOGICAL_HSM

Description This command allows an application to select the logical HSM that should be active. If the device
does not support multiple logical HSMs this command returns
WFS_ERR_UNSUPP_COMMAND. The WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL
command can be called to determine the current active logical HSM.

Once the active logical HSM is set with this command, that logical HSM remains active until this
command is used to change the logical HSM or the system is re-started.

The selected HSM is not persistent across re-boots, when applications want to address a specific
logical HSM they must ensure that the correct logical HSM is set as the active logical HSM.

The commands affected by this command are as follows:

• WFS_INF_PIN_HSM_TDATA

• WFS_INF_PIN_KEY_DETAIL_EX

• WFS_CMD_PIN_HSM_SET_TDATA

• WFS_CMD_PIN_SECURE_MSG_SEND (only affected for the protocols
WFS_PIN_PROTHSM_LDI and WFS_PIN_PROTISOPS)

• WFS_CMD_PIN_SECURE_MSG_RECEIVE (only affected for the protocols
WFS_PIN_PROTHSM_LDI and WFS_PIN_PROTISOPS)

• WFS_CMD_PIN_HSM_INIT

• WFS_CMD_PIN_GET_JOURNAL (only affected for the protocol
WFS_PIN_PROTISOPS)

If there are multiple XFS applications that manipulate the current logical HSM then applications
must co-operate or use the XFS locking facilities to synchronize access to the logical HSMs. The
current logical HSM is the same for all clients.

Input Param LPWFSPINHSMIDENTIFIER lpSetHSM;
typedef struct _wfs_pin_hsm_identifier
{
 WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;

wHSMSerialNumber
Specifies the serial number of the HSM that should be set as the active HSM. The value passed in
this field corresponds to the wHSMSerialNumber field reported in the
WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL command output structure (and hence
corresponds to the CB tag in the HSM TDATA). The wHSMSerialNumber value is encoded as a
standard binary value (i.e. it is not BCD).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_INVALIDHSM The logical HSM serial number specified is
not valid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_HSM_CHANGED Indicates that the current logical HSM has

changed to the HSM identified within the
event.

CWA 16926-6:2020 (E)

117

Comments None.

CWA 16926-6:2015 (E)

118

5.1.30 WFS_CMD_PIN_IMPORT_KEYBLOCK

Description The command imports an encryption key that has been passed by the application within an ANSI
X9 TR-31 key block (see reference 35).

Input Param LPWFSPINIMPORTKEYBLOCK lpImportKeyBlock;
typedef struct _wfs_pin_import_key_block
 {
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxKeyBlock;
 } WFSPINIMPORTKEYBLOCK, *LPWFSPINIMPORTKEYBLOCK;

lpsKey
Specifies the name of key being loaded.

lpsEncKey
lpsEncKey specifies a key name which will be used to verify and decrypt the key block passed in
lpxKeyBlock. This key must have a key usage defined as WFS_PIN_USEANSTR31MASTER.

lpxKeyBlock
Specifies the complete key block for the key being imported. If importing a DUKPT Initial Key,
the Key Set Identifier (‘KS’) must be included in one of the Key Block Header optional blocks
(see reference 35).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not

found.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not

loaded.
WFS_ERR_PIN_FORMATINVALID The format of the key block is invalid.
WFS_ERR_PIN_CONTENTINVALID The content of the key block is invalid.
WFS_ERR_PIN_FORMATNOTSUPP The key block version or content is not

supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_USEVIOLATION The key control flags specified within the
key block are inconsistent, are not supported
by the hardware, or the lpsEncKey is not
defined as a
WFS_PIN_USEANSTR31MASTER key.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of the actual encryption key
within lpxKeyBlockValue is not supported.

WFS_ERR_PIN_KEYINVALID The key block failed its authentication
check.

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2020 (E)

119

5.1.31 WFS_CMD_PIN_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSPINPOWERSAVECONTROL lpPowerSaveControl;
typedef struct _wfs_pin_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSPINPOWERSAVECONTROL, *LPWFSPINPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-6:2015 (E)

120

5.1.32 WFS_CMD_PIN_DEFINE_LAYOUT

Description This command allows an application to configure a layout for any PIN device. One or more
layouts can be defined with a single request of this command.

There can be a layout for each of the different types of keyboard entry modes, if the vendor and
the hardware supports these different methods. The types of keyboard entry modes are (1) Mouse
mode, (2) XFS Data mode which corresponds to the WFS_CMD_PIN_GET_DATA command,
(3) XFS PIN mode which corresponds to the WFS_CMD_PIN_GET_PIN command, and (4) XFS
Secure mode which corresponds to the WFS_CMD_PIN_SECUREKEY_ENTRY command. One
or more layouts can be preloaded into the device, if the device supports this, or a single layout can
be loaded into the device immediately prior to the keyboard command being requested.

If a WFS_CMD_PIN_GET_DATA, WFS_CMD_PIN_GET_PIN, or
WFS_CMD_PIN_SECUREKEY_ENTRY command is already in progress (or queued), then this
command is rejected with a command result of WFS_ERR_SEQUENCE_ERROR.

It is recommended that WFS_INF_PIN_GET_LAYOUT is used before this command to check
for the presence of frames containing Physical Keys (FKs or FDKs). If a layout includes one or
more frames containing Physical Keys, the number of frames containing Physical Keys, the size
and position of the frame, and the size, position and order of the keys contained in the frame,
cannot be changed.

Layouts defined with this command are persistent.

Input Param LPWFSPINLAYOUT *lppLayout;

Pointer to a null-terminated array of pointers to WFSPINLAYOUT structures.

For the definition of the WFSPINLAYOUT structure, see command
WFS_INF_PIN_GET_LAYOUT.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_MODENOTSUPPORTED The device does not support the float action.
WFS_ERR_PIN_FRAMECOORD A frame coordinate or size field is out of

range.
WFS_ERR_PIN_KEYCOORD A key coordinate or size field is out of range.
WFS_ERR_PIN_FRAMEOVERLAP Frames are overlapping.
WFS_ERR_PIN_KEYOVERLAP Keys are overlapping.
WFS_ERR_PIN_TOOMANYFRAMES There are more frames defined than allowed.
WFS_ERR_PIN_TOOMANYKEYS There are more keys defined than allowed.
WFS_ERR_PIN_KEYALREADYDEFINED The combination of the wKeyType and

values for ulFK and ulShiftFK can only be
used once per layout.

Events None.

Comments None.

CWA 16926-6:2020 (E)

121

5.1.33 WFS_CMD_PIN_START_AUTHENTICATE

Description This command is used to retrieve the data that needs to be signed and hence provided to the
WFS_CMD_PIN_AUTHENTICATE command in order to perform an authenticated action on the
PIN device. If this command returns data to be signed then the
WFS_CMD_PIN_AUTHENTICATE command must be used to call the command referenced by
lpStartAuthenticate. Any attempt to call the referenced command without using the
WFS_CMD_PIN_AUTHENTICATE command, if authentication is required, shall result in
WFS_ERR_AUTH_REQUIRED.

Input Param LPWFSPINSTARTAUTHENTICATE lpStartAuthenticate;
typedef struct _wfs_pin_start_authenticate
 {
 DWORD dwCommandID;
 LPVOID lpvInputData;
 } WFSPINSTARTAUTHENTICATE, *LPWFSPINSTARTAUTHENTICATE;

dwCommandID
The XFS command ID of the command to which authentication is being applied.

lpvInputData
Pointer to the input data structure of the command referred to by dwCommandID. For details on
the contents of the structure pointed to by lpvInputData, refer to the command referenced by
dwCommandID.

Output Param LPWFSPINSTARTAUTHENTICATEOUT lpStartAuthenticateOut;
typedef struct _wfs_pin_start_authenticate_out
 {
 HRESULT hInternalCmdResult;
 LPWFSXDATA lpxDataToSign;
 DWORD dwSigners;
 } WFSPINSTARTAUTHENTICATEOUT, *LPWFSPINSTARTAUTHENTICATEOUT;

hInternalCmdResult
Result from the command referenced by dwCommandID. If the data within lpvInputData is
invalid or cannot be used for some reason, then hInternalCmdResult will return an error but the
result of this command will be WFS_SUCCESS.

lpxDataToSign
The data that must be signed by one of the authorities indicated by dwSigners before the
command referenced by dwCommandID can be executed. If the command specified by
dwCommandID does not require authentication, then lpxDataToSign is NULL and the command
result is WFS_SUCCESS.

If dwSigners includes the WFS_PIN_SIGNER_TR34 flag, then either the
WFS_PIN_SIGNER_CA or WFS_PIN_SIGNER_HL flag must also be set. In this case
lpxDataToSign shall contain a TR34 Random Number Token. It shall be the responsibility of the
host/HSM to use this data to build and sign the relevant TR34 token, incorporating this random
number. Please refer to X9 TR34-2012 [Ref. 42] for more details.

dwSigners
Specifies the allowed signers of the data as a combination of the following flags:

Value Meaning
WFS_PIN_SIGNER_NONE Authentication is not required.
WFS_PIN_SIGNER_CERTHOST The current Host can be used to sign

lpxDataToSign, using the RSA certificate-
based scheme.

WFS_PIN_SIGNER_SIGHOST The current Host can be used to sign
lpxDataToSign, using the RSA signature-
based scheme.

WFS_PIN_SIGNER_CA The Certificate Authority (CA) can be used
to sign lpxDataToSign.

WFS_PIN_SIGNER_HL The Higher Level (HL) Authority can be
used to sign lpxDataToSign.

CWA 16926-6:2015 (E)

122

WFS_PIN_SIGNER_TR34 The format of the data to sign must comply
with the data defined in X9 TR34-2012 [Ref.
42]. This value can only be returned in
combination with the
WFS_PIN_SIGNER_CERTHOST,
WFS_PIN_SIGNER_CA or
WFS_PIN_SIGNER_HL flags.

WFS_PIN_SIGNER_CBCMAC A MAC calculated over the lpxDataToSign
using the CBC MAC algorithm can be used
as a signature.

WFS_PIN_SIGNER_CMAC A MAC calculated over the lpxDataToSign
using the CMAC algorithm can be used as a
signature.

WFS_PIN_SIGNER_RESERVED_1 Reserved for a vendor-defined signing
method.

WFS_PIN_SIGNER_RESERVED_2 Reserved for a vendor-defined signing
method.

WFS_PIN_SIGNER_RESERVED_3 Reserved for a vendor-defined signing
method.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events None.

Comments To allow XFS client applications to be multi-vendor, the
WFS_CMD_PIN_START_AUTHENTICATE and WFS_CMD_PIN_AUTHENTICATE
commands can be executed even if authentication is not required. If authentication is not required
for a particular command, then the WFS_CMD_PIN_START_AUTHENTICATE command will
return WFS_SUCCESS, lpxDataToSign will be NULL, and dwSigners will be
WFS_PIN_SIGNER_NONE.

Then, the client application can do one of two things:

(1) Call the WFS_CMD_PIN_AUTHENTICATE command with dwSigner set to
WFS_PIN_SIGNER_NONE and lpxSignedData set to NULL.

(2) Call the command referenced by dwCommandID directly (i.e. if authenticated delete is not
required, then the WFS_CMD_PIN_IMPORT_KEY command can be called directly in order
to delete a key).

CWA 16926-6:2020 (E)

123

5.1.34 WFS_CMD_PIN_AUTHENTICATE

Description This command can be used to add authentication to any existing PIN command. The functionality
of the command specified by dwCommandID will be executed within the context of this
command, and the XFS application should not call the command specified by dwCommandID.
The signed data is unique for each command request and therefore can be used only once per
command.

The WFS_CMD_PIN_START_AUTHENTICATE command must be called before this
command. If this command is called without first calling the
WFS_CMD_PIN_START_AUTHENTICATE command, then this command will fail and
WFS_ERR_SEQUENCE_ERROR will be returned.

The WFS_CMD_PIN_START_AUTHENTICATE command does not need to immediately
precede the WFS_CMD_PIN_AUTHENTICATE command. It is acceptable for other commands
to be executed between these commands, except for any command that will clear from the PIN
device the data that is being saved in order to verify the signed data provided in the
WFS_CMD_PIN_AUTHENTICATE command. If this occurs, then
WFS_ERR_SEQUENCE_ERROR will be returned.

Input Param LPWFSPINAUTHENTICATE lpAuthenticate;
typedef struct _wfs_pin_authenticate
 {
 DWORD dwSigner;
 LPSTR lpsSigKey;
 LPWFSXDATA lpxSignedData;
 DWORD dwCommandID;
 LPVOID lpvInputData;
 } WFSPINAUTHENTICATE, *LPWFSPINAUTHENTICATE;

dwSigner
Specifies the signer of the data, with one of the following values:

Value Meaning
WFS_PIN_SIGNER_NONE Authentication is not required.
WFS_PIN_SIGNER_CERTHOST The data is signed by the current Host, using

the RSA certificate-based scheme.
WFS_PIN_SIGNER_SIGHOST The data is signed by the current Host, using

the RSA signature-based scheme.
WFS_PIN_SIGNER_CA The data is signed by the Certificate

Authority (CA).
WFS_PIN_SIGNER_HL The data is signed by the Higher Level (HL)

Authority.
WFS_PIN_SIGNER_CBCMAC A MAC is calculated over the data using

lpsKey and the CBC MAC algorithm.
WFS_PIN_SIGNER_CMAC A MAC is calculated over the data using

lpsKey and the CMAC algorithm.
WFS_PIN_SIGNER_RESERVED_1 Reserved for a vendor-defined signing

method.
WFS_PIN_SIGNER_RESERVED_2 Reserved for a vendor-defined signing

method.
WFS_PIN_SIGNER_RESERVED_3 Reserved for a vendor-defined signing

method.

In addition, a combination of the following flags can optionally be used:

Value Meaning
WFS_PIN_SIGNER_TR34 The format of the data that was signed

complies with the data defined in X9 TR34-
2012 [Ref. 42]. This value can only be used
in combination with the
WFS_PIN_SIGNER_CERTHOST,
WFS_PIN_SIGNER_CA or
WFS_PIN_SIGNER_HL flags.

CWA 16926-6:2015 (E)

124

lpsSigKey
If WFS_PIN_SIGNER_CBCMAC or WFS_PIN_SIGNER_CMAC are specified for dwSigner,
then lpsSigKey is the name of a key with the WFS_PIN_USEMACING usage.

If WFS_PIN_SIGNER_SIGHOST is specified for dwSigner, then lpsSigKey specifies the name of
a previously loaded asymmetric key (i.e. an RSA Public Key). The default Signature Issuer public
key (installed in a secure environment during manufacture) will be used, if lpsSigKey is either
NULL or contains the name of the default Signature Issuer as defined in section 8.1.8.

Otherwise, this parameter must be NULL.

lpxSignedData
This field contains the signed version of the data that was provided by the PIN device during the
previous call to the WFS_CMD_PIN_START_AUTHENTICATE command.

The signer specified by dwSigner is used to do the signing. Both the signature and the data that
was signed must be verified before the operation is performed.

If WFS_PIN_SIGNER_CERTHOST, WFS_PIN_SIGNER_CA, or WFS_PIN_SIGNER_HL are
specified for dwSigner, then lpxSignedData is a PKCS#7 signedData structure which includes the
data that was returned by the WFS_CMD_PIN_START_AUTHENTICATE command. The
optional CRL field may or may not be included in the PKCS#7 signedData structure.

If the WFS_PIN_SIGNER_TR34 flag is set, then either the WFS_PIN_SIGNER_CERTHOST,
WFS_PIN_SIGNER_CA or WFS_PIN_SIGNER_HL flag must also be set. Please refer to the X9
TR34-2012 [Ref. 42] for more details.

If WFS_PIN_SIGNER_SIGHOST is specified for dwSigner, then lpxSignedData is a PKCS#7
signedData structure which includes the data that was returned by the
WFS_CMD_PIN_START_AUTHENTICATE command.

If WFS_PIN_SIGNER_CBCMAC or WFS_PIN_SIGNER_CMAC are specified for dwSigner,
then lpsSigKey must refer to a key loaded with the WFS_PIN_USEMACING usage.

dwCommandID
The XFS command ID of the command to which authentication is being applied.

lpvInputData
Pointer to the input data structure of the command referred to by dwCommandID. For details on
the contents of the structure pointed to by lpvInputData, refer to the command referenced by
dwCommandID.

Output Param LPWFSPINAUTHENTICATEOUT lpAuthenticateOut;
typedef struct _wfs_pin_authenticate_out
 {
 HRESULT hInternalCmdResult;
 DWORD dwCommandID;
 LPVOID lpvOutputData;
 } WFSPINAUTHENTICATEOUT, *LPWFSPINAUTHENTICATEOUT;

hInternalCmdResult
Result from the command referenced by dwCommandID. If the authentication was verified but
the internal command failed, then hInternalCmdResult will return an error but the result of this
command will be WFS_SUCCESS.

dwCommandID
The XFS command ID of the command to which authentication was applied.

lpvOutputData
Pointer to the output data structure of the command referred to by dwCommandID. For details on
the contents of the structure pointed to by lpvOutputData, refer to the command referenced by
dwCommandID.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

CWA 16926-6:2020 (E)

125

WFS_ERR_PIN_KEYNOTFOUND The supplied key name cannot be found.
WFS_ERR_PIN_RANDOMINVALID The random number is either incorrect or no

random number has been generated prior to
this command.

WFS_ERR_PIN_MACINVALID The MAC calculated by the PIN device does
not match the MAC supplied in
lpxSignedData

WFS_ERR_PIN_SIGNATUREINVALID The signature in the input data is invalid.
WFS_ERR_PIN_INVALIDID The data that was signed was not valid.

Events None.

Comments To allow XFS client applications to be multi-vendor, the
WFS_CMD_PIN_START_AUTHENTICATE and WFS_CMD_PIN_AUTHENTICATE
commands can be executed even if authentication is not required. If authentication is not required
for a particular command, then the WFS_CMD_PIN_START_AUTHENTICATE command will
return WFS_SUCCESS, lpxDataToSign will be NULL, and dwSigners will be
WFS_PIN_SIGNER_NONE.

Then, the client application can do one of two things:

(1) Call the WFS_CMD_PIN_AUTHENTICATE command with dwSigner set to
WFS_PIN_SIGNER_NONE and lpxSignedData set to NULL.

(2) Call the command referenced by dwCommandID directly (i.e. if authenticated delete is not
required, then the WFS_CMD_PIN_IMPORT_KEY command can be called directly in order
to delete a key).

CWA 16926-6:2015 (E)

126

5.1.35 WFS_CMD_PIN_GET_PINBLOCK_EX

Description This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the algorithms
specified in the WFS_INF_PIN_CAPABILITIES command. This command will clear the PIN
unless the application has requested that the PIN be maintained through the
WFS_CMD_PIN_MAINTAIN_PIN command.

In order to access the maximum functionality it is recommended that applications should use the
WFS_CMD_PIN_GET_PINBLOCK_340 command.

Input Param LPWFSPINBLOCKEX lpPinBlockEx;
typedef struct _wfs_pin_block_ex
 {
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 DWORD dwFormat;
 LPSTR lpsKey;
 LPSTR lpsKeyEncKey;
 DWORD dwAlgorithm;
 } WFSPINBLOCKEX, *LPWFSPINBLOCKEX;

lpsCustomerData
The customer data should be an ASCII string. Used for ANSI, ISO-0, ISO-1, ISO-3 and ISO-4
algorithm to build the formatted PIN. For ANSI, ISO-0, ISO-3, and ISO-4 the PAN (Primary
Account Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is
required. If not used a NULL is required.

Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed
as unpacked string, for example: 0123456789ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check
digit), and the CCS (8 digits).

lpsXORData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation. This parameter is a string of
hexadecimal data that must be converted by the application, e.g. 0x0123456789ABCDEF must be
converted to 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45
0x46 and terminated with 0x00. In other words the application would set lpsXORData to
“0123456789ABCDEF\0”. The hex digits 0xA to 0xF can be represented by characters in the
ranges ‘a’ to ‘f’ or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed.
If the formatted PIN is not encrypted twice (i.e. if lpsKeyEncKey is NULL) this parameter is
ignored.

bPadding
Specifies the padding character. The valid range is 0x00 to 0x0F. Only the least significant nibble
is used.

dwFormat
Specifies the format of the PIN block. Possible values are one of the following:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the key used to encrypt the formatted PIN for the first time, NULL if no encryption is
required. If this specifies a double-length or triple-length key, triple DES encryption will be
performed. The key referenced by lpsKey must have the WFS_PIN_USEFUNCTION or
WFS_PIN_USEPINREMOTE attribute. If this specifies an RSA key, RSA encryption will be
performed.

CWA 16926-6:2020 (E)

127

lpsKeyEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required. The key referenced by lpsKeyEncKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_USEPINREMOTE attribute. If this specifies a
double-length or triple-length key, triple DES encryption will be performed.

dwAlgorithm
Specifies the encryption algorithm. Possible values are one of the following:

Value Meaning
WFS_PIN_CRYPTDESECB Electronic Code Book.
WFS_PIN_CRYPTDESCBC Cipher Block Chaining.
WFS_PIN_CRYPTDESCFB Cipher Feed Back.
WFS_PIN_CRYPTRSA RSA Encryption.
WFS_PIN_CRYPTECMA ECMA Encryption.
WFS_PIN_CRYPTTRIDESECB Triple DES with Electronic Code Book.
WFS_PIN_CRYPTTRIDESCBC Triple DES with Cipher Block Chaining.
WFS_PIN_CRYPTTRIDESCFB Triple DES with Cipher Feed Back.
WFS_PIN_CRYPTSM4 SM4 block cipher algorithm as defined in

Password industry standard of the People’s
Republic of China GM/T 0002-2012 [Ref.
43].

Output Param LPWFSXDATA lpxPinBlock;

lpxPinBlock
Pointer to the encrypted PIN block.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_NOPIN The PIN has not been entered was not long

enough or has been cleared.
WFS_ERR_PIN_FORMATNOTSUPP The specified format is not supported.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpsKeyEncKey or lpsKey is not

supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

WFS_ERR_PIN_ALGORITHMNOTSUPP The specified algorithm is not supported by
this command.

WFS_ERR_PIN_DUKPTOVERFLOW The DUKPT KSN encryption counter has
overflowed to zero. A new IPEK must be
loaded.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
WFS_EXEE_PIN_DUKPT_KSN An lpsKey with WFS_PIN_USEDUKPT

usage has been used to encrypt the PIN
block.

Comments None.

CWA 16926-6:2015 (E)

128

5.1.36 WFS_CMD_PIN_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with
display) as well as to synchronize actions of the different device classes. This command is
intended to be used only on hardware which is capable of synchronizing functionality within a
single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in
the lpdwSynchronizableCommands parameter of the WFS_INF_PIN_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in
advance. Any preparation that occurs by calling this command will not affect any other
subsequent command. However, any subsequent execute command other than the one that was
specified in the dwCommand input parameter will execute normally and may invalidate the
pending synchronization. In this case the application should call the
WFS_CMD_PIN_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSPINSYNCHRONIZECOMMAND lpSynchronizeCommand;
typedef struct _wfs_pin_synchronize_command
 {
 DWORD dwCommand;
 LPVOID lpCmdData;
 } WFSPINSYNCHRONIZECOMMAND, *LPWFSPINSYNCHRONIZECOMMAND;

dwCommand
The command ID of the command to be synchronized and executed next.

lpCmdData
Pointer to data or a data structure that represents the parameter that is normally associated with
the command that is specified in dwCommand. For example, if dwCommand is
WFS_CMD_PIN_CRYPT then lpCmdData will point to a WFSPINCRYPT structure. This
parameter can be NULL if no command input parameter is needed or if this detail is not needed to
synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the
application synchronizes for a command with this command specifying a parameter but
subsequently executes the synchronized command with a different parameter. This case should
not result in an error; however, the preparation effect could be different from what the application
expects. The application should, therefore, make sure to use the same parameter between
lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service
Provider.

WFS_ERR_PIN_SYNCHRONIZEUNSUPP The preparation for the command specified
in the dwCommand with the parameter
specified in the lpCmdData is not supported
by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref. 1] Appendix C.

CWA 16926-6:2020 (E)

129

5.1.37 WFS_CMD_PIN_CRYPT_340

Description The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the lppCryptAttributes of the
WFS_INF_PIN_CAPABILITIES command.

This command cannot be used for random number generation. For random number generation,
the WFS_CMD_PIN_CRYPT command should be used.

This command cannot be used with externally encrypted keys, which can be specified using the
lpxKeyEncKey parameter of the WFS_CMD_PIN_CRYPT command

This command can be used for Message Authentication Code generation and verification (i.e.
MACing). The input data is padded to the necessary length mandated by the encryption algorithm
using the bPadding parameter.

This command can be used for asymmetric signature generation and verification. The input data is
padded to the necessary length mandated by the signature algorithm using the bPadding
parameter.

Applications can use an alternative padding method by pre-formatting the data passed and
combining this with the standard padding method.

The Start Value (or Initialization Vector) can be provided as input data to this command, or it can
be imported via TR-31 prior to requesting this command and referenced by name. The Start Value
and Start Value Key are both optional parameters.

Input Param LPWFSPINCRYPT340 lpCrypt340;
typedef struct _wfs_pin_crypt_340
 {
 LPSTR lpsKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
 LPWFSXDATA lpxVerifyData;
 LPWFSPINATTRIBUTES lpCryptAttributes;
 } WFSPINCRYPT340, *LPWFSPINCRYPT340;

lpsKey
Specifies the name of the stored key.

lpsStartValueKey
If lpxStartValue specifies an Initialization Vector (IV), then this parameter specifies the name of
the stored key used to decrypt the lpxStartValue to obtain the IV. If lpxStartValue is NULL and
this parameter is not NULL, then this parameter specifies the name of the IV that has been
previously imported via TR-31. If this parameter is NULL, lpxStartValue is used as the
Initialization Vector.

lpxStartValue
The initialization vector for CBC / CFB encryption and MACing. If this parameter and
lpsStartValueKey are both NULL the default value for CBC / CFB / MAC is 16 hex digits 0x0.

bPadding
Specifies the padding character. The padding character is a full byte, e.g. 0xFF. The valid range is
0x00 to 0xFF.

bCompression
Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character (e.g. 0x20 in ASCII or 0x40 in EBCDIC).

lpxCryptData
Pointer to the data to be encrypted, decrypted, MACed, or signed. If
lpCryptAttributes.bModeOfUse is ‘V’, then the PIN device will either generate a MAC or sign the
lpxCryptData and compare with lpxVerifyData.

CWA 16926-6:2015 (E)

130

lpxVerifyData
Pointer to the data to be verified by MAC or signature. If the bModeOfUse is ‘E’, ‘D’, ‘G’, or ‘S’,
then this parameter must be NULL.

lpCryptAttributes
Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used for this command. For a list of valid values see the
lppCryptAttributes capability field. The values specified must be compatible with the key
identified by lpsKey.

Output Param LPWFSXDATA lpxCryptData;

lpxCryptData
Pointer to the encrypted or decrypted data, MAC value or signature. This parameter will be NULL
if the lpCryptAttributes.bModeOfUse is ‘V’.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_MODENOTSUPPORTED The mode specified by bModeOfUse is not

supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key name was found but the
corresponding key value has not been
loaded.

WFS_ERR_PIN_USEVIOLATION The use specified by bKeyUsage is not
supported.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxStartValue is not supported
or the length of an encryption key is not
compatible with the encryption operation
required.

WFS_ERR_PIN_NOCHIPTRANSACTIVE A chipcard key is used as encryption key and
there is no chip transaction active.

WFS_ERR_PIN_ALGORITHMNOTSUPP The algorithm specified by bAlgorithm is not
supported.

WFS_ERR_PIN_MACINVALID The MAC verification failed.
WFS_ERR_PIN_SIGNATUREINVALID The signature verification failed.
WFS_ERR_PIN_CRYPTOMETHODNOTSUPP The cryptographic method specified by

dwCryptoMethod is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
WFS_EXEE_PIN_DUKPT_KSN An lpsKey with

WFS_PIN_USEKEYDERKEY usage has
been used to encrypt or MAC the data.

Comments This command can be used in place of the following commands, except for the cases mentioned in
the description of this command:

- WFS_CMD_PIN_CRYPT

The length of the key must match the encryption algorithm and cryptographic method specified.
For example, if a double-length or triple-length key is used when a DES encryption algorithm is
specified, or a single-length key is used when Triple DES is specified, the
WFS_ERR_PIN_INVALIDKEYLENGTH error is returned.

The data type LPWFSXDATA is used to pass hexadecimal data and is defined as follows:

CWA 16926-6:2020 (E)

131

typedef struct _wfs_hex_data
 {
 USHORT usLength;
 LPBYTE lpbData;
 } WFSXDATA, *LPWFSXDATA;

usLength
Length of the byte stream pointed to by lpbData.

lpbData
Pointer to the binary data stream.

Valid lpCryptAttributes

bKeyUsage bAlgorithm bModeOfUse

‘D0’ ‘A’, ‘D’, ‘T’ ‘D’, ‘E’

‘D1’ ‘R’ ‘D’, ‘E’

‘M0’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M1’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M2’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M3’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M4’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M5’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M6’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M7’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘M8’ ‘A’, ‘D’, ‘T’ ‘G’, ‘V’

‘S0’ ‘R’ ‘S’, ‘T’

‘S1’ ‘R’ ‘S’, ‘T’

‘S2’ ‘R’ ‘S’, ‘T’

Mapping of legacy algorithms to lpCryptAttributes:

wAlgorithm/dwAlgorithm bKeyUsage bAlgorithm bModeOfUse dwCryptoMethod

WFS_PIN_CRYPTDESECB ‘D0’ ‘D’ ‘E’ or ‘D’ WFS_PIN_CRYPTOECB

WFS_PIN_CRYPTDESCBC ‘D0’ ‘D’ ‘E’ or ‘D’ WFS_PIN_CRYPTOCBC

WFS_PIN_CRYPTDESCFB ‘D0’ ‘D’ ‘E’ or ‘D’ WFS_PIN_CRYPTOCFB

WFS_PIN_CRYPTRSA ‘D1’ ‘R’ ‘E’ or ‘D’ See
dwRSAEncipherAlgorithm
for valid values.

WFS_PIN_CRYPTECMA1 N/A N/A N/A N/A

WFS_PIN_CRYPTDESMAC ‘M1’ ‘D’ ‘G’ 0

WFS_PIN_CRYPTTRIDESECB ‘D0’ ‘T’ ‘E’ or ‘D’ WFS_PIN_CRYPTOECB

WFS_PIN_CRYPTTRIDESCBC ‘D0’ ‘T’ ‘E’ or ‘D’ WFS_PIN_CRYPTOCBC

WFS_PIN_CRYPTTRIDESCFB ‘D0’ ‘T’ ‘E’ or ‘D’ WFS_PIN_CRYPTOCFB

WFS_PIN_CRYPTTRIDESMAC ‘M3’ ‘T’ ‘G’ 0

WFS_PIN_CRYPTMAAMAC2 N/A N/A N/A N/A

WFS_PIN_CRYPTTRIDESMAC2805 ‘M1’ ‘T’ ‘G’ 0

CWA 16926-6:2015 (E)

132

WFS_PIN_CRYPTSM43 N/A N/A N/A N/A

WFS_PIN_CRYPTSM4MAC3 N/A N/A N/A N/A
1: ECMA is not supported with this command. ECMA can still be used with the WFS_CMD_PIN_CRYPT
command.
2: ISO recommended in 2002 to stop using the MAA MAC algorithm. This command does not support MAA
MAC. MAA MAC can still be used with the WFS_CMD_PIN_CRYPT command.
3: This command does not support the SM4 algorithms. The SM4 algorithms can still be used with the
WFS_CMD_PIN_CRYPT command.

CWA 16926-6:2020 (E)

133

5.1.38 WFS_CMD_PIN_GET_PINBLOCK_340

Description This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the algorithms
specified in the WFS_INF_PIN_CAPABILITIES command. This command will clear the PIN
unless the application has requested that the PIN be maintained through the
WFS_CMD_PIN_MAINTAIN_PIN command.

Input Param LPWFSPINBLOCK340 lpPinBlock340;
typedef struct _wfs_pin_block_340
 {
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 DWORD dwFormat;
 LPSTR lpsKey;
 LPSTR lpsSecondEncKey;
 LPWFSPINATTRIBUTES lpPINBlockAttributes;
 } WFSPINBLOCK340, *LPWFSPINBLOCK340;

lpsCustomerData
The customer data should be an ASCII string. Used for ANSI, ISO-0, ISO-1, ISO-3, and ISO-4
algorithm to build the formatted PIN. For ANSI, ISO-0, ISO-3 and ISO-4 the PAN (Primary
Account Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is
required. If not used a NULL is required.

Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed
as unpacked string, for example: 0123456789ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36
0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check
digit), and the CCS (8 digits).

lpsXORData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation. This parameter is a string of
hexadecimal data that must be converted by the application, e.g. 0x0123456789ABCDEF must be
converted to 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45
0x46 and terminated with 0x00. In other words the application would set lpsXORData to
“0123456789ABCDEF\0”. The hex digits 0xA to 0xF can be represented by characters in the
ranges ‘a’ to ‘f’ or ‘A’ to ‘F’. If this value is NULL no XOR-operation will be performed.
If the formatted PIN is not encrypted twice (i.e. if lpsSecondEncKey is NULL) this parameter is
ignored.

bPadding
Specifies the padding character. The valid range is 0x00 to 0x0F. Only the least significant nibble
is used.

dwFormat
Specifies the format of the PIN block. Possible values are one of the following:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the key used to encrypt the formatted PIN for the first time, NULL if no encryption is
required. If this specifies a double-length or triple-length key, triple DES encryption will be
performed. The key referenced by lpsKey must have the WFS_PIN_USEFUNCTION or
WFS_PIN_USEPINREMOTE attribute.

lpsSecondEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required. The key referenced by lpsSecondEncKey must have the
WFS_PIN_USEFUNCTION or WFS_PIN_USEPINREMOTE attribute.

CWA 16926-6:2015 (E)

134

lpPINBlockAttributes
Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used for this command. For a list of valid values see the
lppPINBlockAttributes capabilities field. For a list of valid values see the lppCryptAttributes
capability field. The values specified must be compatible with the key identified by lpsKey.

Output Param LPWFSXDATA lpxPinBlock;

lpxPinBlock
Pointer to the encrypted PIN block.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The use specified by bKeyUsage is not

supported.
WFS_ERR_PIN_NOPIN The PIN has not been entered was not long

enough or has been cleared.
WFS_ERR_PIN_FORMATNOTSUPP The specified format is not supported.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpsSecondEncKey or lpsKey is

not supported by this key or the length of an
encryption key is not compatible with the
encryption operation required.

WFS_ERR_PIN_ALGORITHMNOTSUPP The algorithm specified by bAlgorithm is not
supported by this command.

WFS_ERR_PIN_DUKPTOVERFLOW The DUKPT KSN encryption counter has
overflowed to zero. A new IPEK must be
loaded.

WFS_ERR_PIN_MODENOTSUPPORTED The mode specified by bModeOfUse is not
supported.

WFS_ERR_PIN_CRYPTOMETHNOTSUPP The cryptographic method specified by
dwCryptoMethod is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
WFS_EXEE_PIN_DUKPT_KSN An lpsKey with WFS_PIN_USEDUKPT

usage has been used to encrypt the PIN
block.

Comments This command can be used in place of the following commands:.

- WFS_CMD_PIN_GET_PINBLOCK

- WFS_CMD_PIN_GET_PINBLOCK_EX

CWA 16926-6:2020 (E)

135

5.1.39 WFS_CMD_PIN_IMPORT_KEY_340

Description The encryption key passed by the application is loaded in the encryption module. For secret keys,
the key must be passed encrypted with an accompanying “key encrypting key” or "key block
protection key". For public keys, they key is not required to be encrypted but is required to have
verification data in order to be loaded.

This command can also be used to delete a key without authentication. Where an authenticated
delete is required, the WFS_CMD_PIN_START_AUTHENTICATE and
WFS_CMD_PIN_AUTHENTICATE commands should be used.

Input Param LPWFSPINIMPORTKEY340 lpImportKey340;
typedef struct _wfs_pin_import_key_340
 {
 LPSTR lpsKey;
 LPWFSPINATTRIBUTES lpKeyAttributes;
 LPWFSXDATA lpxValue;
 LPSTR lpsDecryptKey;
 DWORD dwDecryptMethod;
 LPWFSXDATA lpxVerificationData;
 LPSTR lpsVerifyKey;
 LPWFSPINATTRIBUTES lpVerifyAttributes;
 LPWFSXDATA lpxVendorAttributes;
 } WFSPINIMPORTKEY340, *LPWFSPINIMPORTKEY340;

lpsKey
Specifies the name of the key being loaded or deleted.

lpKeyAttributes
Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used for the key imported by this command. For a list of
valid values see the lppKeyAttributes capability field. The values specified must be compatible
with the key identified by lpsKey.

Must be NULL if the key specified by lpsKey is to be deleted.

lpxValue
Specifies the value of the key to be loaded or the complete key block for the key being loaded.
Must be NULL if the key specified by lpsKey is to be deleted.

lpsDecryptKey
Specifies the name of the key used to decrypt the key being loaded. If lpxValue contains a TR-31
key block, then lpsDecryptKey is the name of the key block protection key that is used to verify
and decrypt the key block. Can be NULL if the data in lpxValue is not encrypted.

Must be NULL if the key specified by lpsKey is to be deleted.

dwDecryptMethod
Specifies the cryptographic method that shall be used with the key specified by lpsDecryptKey.
The PIN device shall use this method to decrypt the encrypted value in the lpxValue parameter.
For a list of valid values see the dwCryptoMethod field in the lppDecryptAttributes capability
field.

Must be 0 if lpsDecryptKey is NULL or the key specified by lpsKey is to be deleted.

Must be 0 if a keyblock is being imported, as the decrypt method is contained within the
keyblock.

lpxVerificationData
Contains the data to be verified before importing. lpxVerificationData is NULL when no
verification is needed before importing or deleting the key. Where an authenticated delete is
required, the WFS_CMD_PIN_START_AUTHENTICATE and
WFS_CMD_PIN_AUTHENTICATE commands should be used.

lpsVerifyKey
Specifies the name of the previously loaded key which will be used to verify the
lpxVerificationData. lpsVerifyKey is NULL when no verification is needed before importing or
deleting the key.

CWA 16926-6:2015 (E)

136

lpVerifyAttributes
Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode to be used to verify this command or to generate verification
output data. Verifying input data will result in no verification output data. For a list of valid values
see the lppVerifyAttributes capability fields.

Must be NULL if lpxVerificationData is NULL.

lpxVendorAttributes
Specifies the vendor attributes of the key to be imported. Refer to vendor documentation for
details. If no vendor attributes are used, then this parameter must be NULL.

Output Param LPWFSPINIMPORTKEY340OUT lpImportKey340Out;
typedef struct _wfs_pin_import_ key_340_out
 {
 LPWFSXDATA lpxVerificationData;
 LPWFSPINATTRIBUTES lpVerifyAttributes;
 ULONG ulKeyLength;
 } WFSPINIMPORTKEY340OUT, *LPWFSPINIMPORTKEY340OUT;

lpxVerificationData
Pointer to the verification data. This parameter is NULL if there is no verification data.

lpVerifyAttributes
Pointer to a WFSPINATTRIBUTES structure. This parameter specifies the encryption algorithm,
cryptographic method, and mode used to verify this command For a list of valid values see the
lppVerifyAttributes capability fields.

This parameter is NULL if there is no verification data.

ulKeyLength
Specifies the length, in bits, of the key. 0 if the key length is unknown.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND One of the keys specified was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_KEYNOVALUE One of the specified keys is not loaded.
WFS_ERR_PIN_USEVIOLATION The use specified by bKeyUsage is not

supported or conflicts with a previously
loaded key with the same name as lpsKey.

WFS_ERR_PIN_FORMATNOTSUPP The specified format is not supported.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
WFS_ERR_PIN_SIG_NOT_SUPP The dwCryptoMethod of the

lpVerifyAttributes is not supported. The key
is not stored in the PIN.

WFS_ERR_PIN_SIGNATUREINVALID The verification data in the input data is
invalid. The key is not stored in the PIN.

WFS_ERR_PIN_RANDOMINVALID The encrypted random number in the input
data does not match the one previously
provided by the PIN device. The key is not
stored in the PIN.

WFS_ERR_PIN_ALGORITHMNOTSUPP The algorithm specified by bAlgorithm is not
supported by this command.

WFS_ERR_PIN_MODENOTSUPPORTED The mode specified by bModeOfUse is not
supported.

CWA 16926-6:2020 (E)

137

WFS_ERR_PIN_CRYPTOMETHODNOTSUPP The cryptographic method specified by
dwCryptoMethod for lpKeyAttributes or
lpVerifyAttributes is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments This command can be used in place of the following commands. Please see the tables in Appendix
A, section 8 of this specification for examples of accomplishing various key import scenarios
using this command compared to older commands prior to this command’s introduction to this
specification:

- WFS_CMD_PIN_IMPORT_KEY

- WFS_CMD_PIN_IMPORT_KEY_EX

- WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

- WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

- WFS_CMD_PIN_IMPORT_KEYBLOCK

CWA 16926-6:2015 (E)

138

5.2 Common commands for Remote Key Loading Schemes

This section describes those commands that are common between the two Remote Key Loading Schemes. The
commands defined within this section can be used for both the Remote Key Loading Scheme using Signatures and
the Remote Key Loading Scheme using Certificates. Section 8 provides additional explanation on how these
commands are used.

5.2.1 WFS_CMD_PIN_START_KEY_EXCHANGE

Description This command is used to start communication with the host, including transferring the host’s Key
Transport Key, replacing the Host certificate, and requesting initialization remotely.

This output value is returned to the host and is used in the
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY,
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY,
WFS_CMD_PIN_LOAD_CERTIFICATE_EX,
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX, and
WFS_CMD_PIN_IMPORT_ KEY_340 commands to verify that the encryptor is talking to the
proper host.

The WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY,
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX,
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY, and
WFS_CMD_PIN_IMPORT_KEY_340 commands end the key exchange process.

Input Param None.

Output Param LPWFSPINSTARTKEYEXCHANGE lpStartKeyExchange;
typedef struct _wfs_pin_start_key_exchange
 {
 LPWFSXDATA lpxRandomItem;
 } WFSPINSTARTKEYEXCHANGE, *LPWFSPINSTARTKEYEXCHANGE;

lpxRandomItem
Pointer to a randomly generated number created by the encryptor. If the PIN device does not
support random number generation and verification, a zero length random number is returned and
a NULL lpbData pointer is returned.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

Events None.

Comments None.

CWA 16926-6:2020 (E)

139

5.3 Remote Key Loading Using Signatures
This section contains commands that are used for Remote Key Loading with Signatures. Applications wishing to
use such functionality must use these commands. Section 8.1 provides additional explanation on how these
commands are used. Section 8.1.8 defines the fixed names for the Security Item and RSA keys that must be loaded
during manufacture.

5.3.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

Description The Public RSA key passed by the application is loaded in the encryption module. The dwUse
parameter restricts the cryptographic functions that the imported key can be used for.

This command provides similar public key import functionality to that provided with
WFS_CMD_PIN_IMPORT_KEY_EX. The primary advantage gained through using this function
is that the imported key can be verified as having come from a trusted source. If a Signature
algorithm is specified that is not supported by the PIN Service Provider, then the request will not
be accepted and the command fails.

Input Param LPWFSPINIMPORTRSAPUBLICKEY lpImportRSAPublicKey;
typedef struct _wfs_pin_import_rsa_public_key
 {
 LPSTR lpsKey;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
 } WFSPINIMPORTRSAPUBLICKEY, *LPWFSPINIMPORTRSAPUBLICKEY;

lpsKey
Specifies the name of key being loaded.

lpxValue
Contains the PKCS #1 formatted RSA Public Key to be loaded, represented in DER encoded
ASN.1.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning
WFS_PIN_USERSAPUBLIC Key is used as a public key for RSA

Encryption including EMV PIN block
creation.

WFS_PIN_USERSAPUBLICVERIFY Key is used as a public key for RSA
signature verification and/or data decryption.

If dwUse equals zero the specified key is deleted.

When no signature is required to authenticate the deletion of a public key, all parameters but
lpsKey are ignored. In addition, WFS_CMD_PIN_IMPORT_KEY,
WFS_CMD_PIN_IMPORT_KEY_EX, WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY and
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY can be used to delete a key that has been
imported with this command.

When a signature is required to authenticate the deletion of the public key, all parameters in the
command are used. lpxValue must contain the concatenation of the Security Item which uniquely
identifies the PIN device (see the command
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM) and the PKCS #1 formatted RSA
public key to be deleted, i.e. UIATM|| PKTO DELETE. lpxSignature contains the signature generated
from lpxValue using the private key component of the public key being deleted.

The equivalent commands in the certificate scheme must not be used to delete a key imported
through the signature scheme.

CWA 16926-6:2015 (E)

140

lpsSigKey
lpsSigKey specifies the name of a previously loaded asymmetric key (i.e. an RSA Public Key)
which will be used to verify the signature passed in lpxSignature. The default Signature Issuer
public key (installed in a secure environment during manufacture) will be used, if lpsSigKey is
either NULL or contains the name of the default Signature issuer as defined in section 8.1.8.

dwRSASignatureAlgorithm
Defines the algorithm used to generate the Signature specified in lpxSignature. Contains one of
the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm specified. No

signature verification will take place and the
contents of lpsSigKey and lpxSignature are
ignored.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 Use the RSASSA-PKCS1-v1.5 algorithm.
WFS_PIN_SIGN_RSASSA_PSS Use the RSASSA-PSS algorithm.

lpxSignature
Contains the Signature associated with the key being imported or deleted. The Signature is used to
validate the key request has been received from a trusted sender. This value contains NULL when
no key validation is required.

Output Param LPWFSPINIMPORTRSAPUBLICKEYOUTPUT lpImportRSAPublicKeyOutput;
typedef struct _wfs_pin_import_rsa_public_key_output
 {
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
 } WFSPINIMPORTRSAPUBLICKEYOUTPUT,
 *LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

dwRSAKeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be one of the
following flags:

Value Meaning
WFS_PIN_RSA_KCV_NONE No check value is returned in

lpxKeyCheckValue.
WFS_PIN_RSA_KCV_SHA1 lpxKeyCheckValue contains a SHA-1 digest

of the public key.
WFS_PIN_RSA_KCV_SHA256 lpxKeyCheckValue contains a SHA-256

digest of the public key.

lpxKeyCheckValue
Contains the public key check value as defined by the dwRSAKeyCheckMode flag.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOTFOUND The key name supplied in lpsSigKey was not
found.

WFS_ERR_PIN_USEVIOLATION An invalid use was specified for the key
being imported.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
WFS_ERR_PIN_SIG_NOT_SUPP The Service Provider does not support the

Signature Algorithm requested. The key was
discarded.

CWA 16926-6:2020 (E)

141

WFS_ERR_PIN_SIGNATUREINVALID The signature verification failed. The key
has not been stored or deleted.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2015 (E)

142

5.3.2 WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM

Description This command is used to export data elements from the PIN device, which have been signed by
an offline Signature Issuer. This command is used when the default keys and Signature Issuer
signatures, installed during manufacture, are to be used for remote key loading.

This command allows the following data items are to be exported:

• The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

• The RSA Public key component of a public/private key pair that exists within the PIN
device. These public/private key pairs are installed during manufacture. Typically, an
exported public key is used by the host to encipher the symmetric key.

See section 8.1.8 (Default Keys and Security Item loaded during manufacture) for the default
names and the description of the keys installed during manufacture. These names are defined to
ensure multi-vendor applications can be developed.

The WFS_INF_PIN_KEY_DETAIL_EX command can be used to determine the valid uses for
the exported public key.

Input Param LPWFSPINEXPORTRSAISSUERSIGNEDITEM lpExportRSAIssuerSignedItem;
typedef struct _wfs_pin_export_rsa_issuer_signed_item
 {
 WORD wExportItemType;
 LPSTR lpsName;
 } WFSPINEXPORTRSAISSUERSIGNEDITEM,
 *LPWFSPINEXPORTRSAISSUERSIGNEDITEM;

wExportItemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:

Value Meaning
WFS_PIN_EXPORT_EPP_ID The Unique ID for the PIN will be exported,

lpsName is ignored.
WFS_PIN_EXPORT_PUBLIC_KEY The public key identified by lpsName will be

exported.

lpsName
Specifies the name of the public key to be exported. The private/public key pair was installed
during manufacture; see section 8.1.8 (Default Keys and Security Item loaded during
manufacture) for a definition of these default keys. If lpsName is NULL, then the default EPP
public key that is used for symmetric key encryption is exported.

Output Param LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT lpExportRSAIssuerSignedItemOutput;
typedef struct _wfs_pin_export_rsa_issuer_signed_item_output
 {
 LPWFSXDATA lpxValue;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
 } WFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT,
 *LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

lpxValue
If a public key was requested then lpxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then lpxValue
contains the PIN’s Security Item, which may be vendor specific.

dwRSASignatureAlgorithm.
Specifies the algorithm used to generate the Signature returned in lpxSignature. Contains one of
the following values:

CWA 16926-6:2020 (E)

143

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm used, no signature

will be provided in lpxSignature, the data
item may still be exported.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 RSASSA-PKCS1-v1.5 algorithm used.
WFS_PIN_SIGN_RSASSA_PSS RSASSA-PSS algorithm used.

lpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when key
Signatures are not supported.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_NORSAKEYPAIR The PIN device does not have a private key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOTFOUND The data item identified by lpsName was not
found.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2015 (E)

144

5.3.3 WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

Description This command is used to load a Symmetric Key that is either a single-length, double-length or
triple-length DES key into the encryptor. The key passed by the application is loaded in the
encryption module, the (optional) signature is used during validation, the key is decrypted using
the device’s RSA Private Key, and is then stored. The loaded key will be discarded at any stage if
any of the above fails.

The random number previously obtained from the
WFS_CMD_PIN_START_KEY_EXCHANGE command and sent to the host is included in the
signed data. This random number (when present) is verified during the load process. This
command ends the Key Exchange process.

The dwUse parameter restricts the cryptographic functions that the imported key can be used for.

If a Signature algorithm is specified that is not supported by the PIN Service Provider, then the
message will not be decrypted and the command fails.

Input Param LPWFSPINIMPORTRSASIGNEDDESKEY lpImportRSASignedDESKey;
typedef struct _wfs_pin_import_rsa_signed_des_key
 {
 LPSTR lpsKey;
 LPSTR lpsDecryptKey;
 DWORD dwRSAEncipherAlgorithm;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
 } WFSPINIMPORTRSASIGNEDDESKEY, *LPWFSPINIMPORTRSASIGNEDDESKEY;

lpsKey
Specifies the name of key being loaded.

lpsDecryptKey
Specifies the name of the RSA private key used to decrypt the symmetric key. See section 8.1.8
(Default Keys and Security Item loaded during manufacture) for a description of the fixed name
defined for the default decryption private key. If lpsDecryptKey is NULL then the default
decryption private key is used.

dwRSAEncipherAlgorithm
Specifies the RSA algorithm that is used, along with the private key, to decipher the imported key.
Contains one of the following values:

Value Meaning
WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 Use the RSAES_PKCS1-v1.5 algorithm.
WFS_PIN_CRYPT_RSAES_OAEP Use the RSAES_OAEP algorithm.

lpxValue
Specifies the enciphered value of the key to be loaded. lpxValue contains the concatenation of the
random number (when present) and enciphered key.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise, the parameter can be a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key is used for encryption and decryption.
WFS_PIN_USEFUNCTION Key is used for PIN block creation.
WFS_PIN_USEMACING Key is used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USEPINLOCAL Key is used only for local PIN check.
WFS_PIN_USENODUPLICATE Key can be imported only once.
WFS_PIN_USESVENCKEY Key is used as CBC Start Value encryption

key.
WFS_PIN_USEANSTR31MASTER Key can be used for importing keys

packaged within an ANS TR-31 key block.

CWA 16926-6:2020 (E)

145

WFS_PIN_USEPINREMOTE Key is used only for PIN block creation.
WFS_PIN_USERESTRICTEDKEYENCKEY Key is used as

WFS_PIN_USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN_USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored. WFS_CMD_PIN_IMPORT_KEY, WFS_CMD_PIN_IMPORT_KEY_EX,
WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY and
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY can be used to delete a key that has been
imported with this command. The equivalent commands in the certificate scheme must not be
used to delete a key imported through the signature scheme.

lpsSigKey
If lpsSigKey is NULL then the key signature will not be used for validation and lpxSignature is
ignored. Otherwise lpsSigKey specifies the name of an Asymmetric Key (i.e. an RSA Public Key)
previously loaded which will be used to verify the signature passed in lpxSignature.

dwRSASignatureAlgorithm
Specifies the algorithm used to generate the Signature specified in lpxSignature. Contains one of
the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm specified. No

signature verification will take place and the
content of lpxSignature is ignored.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 Use the RSASSA-PKCS1-v1.5 algorithm.
WFS_PIN_SIGN_RSASSA_PSS Use the RSASSA-PSS algorithm.

lpxSignature
Contains the Signature associated with the key being imported. The Signature is used to validate
the key has been received from a trusted sender. The signature is generated over the contents of
the lpxValue. The lpxSignature signature contains NULL when no key validation is required.

Output Param LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT lpImportRSASignedDESKeyOutput;
typedef struct _wfs_pin_import_rsa_signed_des_key_output
 {
 WORD wKeyLength;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
 } WFSPINIMPORTRSASIGNEDDESKEYOUTPUT,
 *LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:

Value Meaning
WFS_PIN_KEYSINGLE The imported key is single length.
WFS_PIN_KEYDOUBLE The imported key is double length.
WFS_PIN_KEYTRIPLE The imported key is triple length.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value Meaning
WFS_PIN_KCVNONE There is no key check value provided.
WFS_PIN_KCVSELF The key check value (KCV) is created by an

encryption of the key with itself. For the
description refer to the
WFS_PIN_KCVSELF literal described in
the Capabilities.

CWA 16926-6:2015 (E)

146

WFS_PIN_KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key. Unless
otherwise specified, ECB encryption is used.
The encryption algorithm used (i.e. DES,
3DES, AES) is determined by the type of
key used to generate the KCV.

lpxKeyCheckValue
pointer to the key verification data that can be used for verification of the loaded key, NULL if
device does not have that capability.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_KEYNOTFOUND One of the keys specified were not found.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not

loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
WFS_ERR_PIN_SIG_NOT_SUPP The Service Provider does not support the

Signature Algorithm requested. The key was
discarded.

WFS_ERR_PIN_SIGNATUREINVALID The signature in the input data is invalid.
The key is not stored in the PIN.

WFS_ERR_PIN_RANDOMINVALID The encrypted random number in the input
data does not match the one previously
provided by the EPP. The key is not stored
in the PIN.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2020 (E)

147

5.3.4 WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR

Description This command will generate a new RSA key pair. The public key generated as a result of this
command can subsequently be obtained by calling
WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM.

The newly generated key pair can only be used for the use defined in the dwUse flag. This flag
defines the use of the private key; its public key can only be used for the inverse function.

Input Param LPWFSPINGENERATERSAKEYPAIR lpGenerateRSAKeyPair;
typedef struct _wfs_pin_generate_rsa_key
 {
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wModulusLength;
 WORD wExponentValue;
 } WFSPINGENERATERSAKEYPAIR, *LPWFSPINGENERATERSAKEYPAIR;

lpsKey
Specifies the name of the new key-pair to be generated. Details of the generated key-pair can be
obtained through the WFS_INF_PIN_KEY_DETAIL_EX command.

dwUse
Specifies what the private key component of the key pair can be used for. The public key part can
only be used for the inverse function. For example, if the WFS_PIN_USERSAPRIVATESIGN
use is specified, then the private key can only be used for signature generation and the partner
public key can only be used for verification. dwUse can take one of the following values:

Value Meaning
WFS_PIN_USERSAPRIVATE Key is used as a private key for RSA

decryption.
WFS_PIN_USERSAPRIVATESIGN Key is used as a private key for RSA

Signature generation. Only data generated
within the device can be signed.

wModulusLength
Specifies the number of bits for the modulus of the RSA key pair to be generated. When zero is
specified then the PIN device will be responsible for defining the length.

wExponentValue
Specifies the value of the exponent of the RSA key pair to be generated. The following defines
valid values the exponent:

Value Meaning
WFS_PIN_DEFAULT The device will decide the exponent.
WFS_PIN_EXPONENT_1 Exponent of 21+1 (3).
WFS_PIN_EXPONENT_4 Exponent of 24+1 (17).
WFS_PIN_EXPONENT_16 Exponent of 216+1 (65537).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_INVALID_MOD_LEN The modulus length specified is invalid.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEY_GENERATION_ERROR

The EPP is unable to generate a key pair.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this

CWA 16926-6:2015 (E)

148

command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2020 (E)

149

5.3.5 WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM

Description This command is used to export data elements from the PIN device that have been signed by a
private key within the EPP. This command is used in place of the
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM command, when a private key
generated within the PIN device is to be used to generate the signature for the data item. This
command allows an application to define which of the following data items are to be exported:

• The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

• The RSA Public key component of a public/private key pair that exists within the PIN
device.

See section 8.1.8 (Default Keys and Security Item loaded during manufacture) for the default
names and the description of the keys installed during manufacture. These names are defined to
ensure multi-vendor applications can be developed.

The public/private key pairs exported by this command are either installed during manufacture or
generated through the WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR command.

The WFS_INF_PIN_KEY_DETAIL_EX command can be used to determine the valid uses for
the exported public key.

Input Param LPWFSPINEXPORTRSAEPPSIGNEDITEM lpExportRSAEPPSignedItem;
typedef struct _wfs_pin_export_rsa_epp_signed_item
 {
 WORD wExportItemType;
 LPSTR lpsName;
 LPSTR lpsSigKey;
 DWORD dwSignatureAlgorithm;
 } WFSPINEXPORTRSAEPPSIGNEDITEM, *LPWFSPINEXPORTRSAEPPSIGNEDITEM

wExportItemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:

Value Meaning
WFS_PIN_EXPORT_EPP_ID The Unique ID for the PIN will be exported,

lpsName is ignored.
WFS_PIN_EXPORT_PUBLIC_KEY The public key identified by lpsName will be

exported.

lpsName
Specifies the name of the public key to be exported. This can either be the name of a key-pair
generated through WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR or the name of one of the
default key-pairs installed during manufacture.

lpsSigKey
Specifies the name of the private key to use to sign the exported item.

dwSignatureAlgorithm.
Specifies the algorithm to use to generate the Signature returned in both the lpxSelfSignature and
lpxSignature fields. Contains one of the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm used, no signature

will be provided in lpxSelfSignature or
lpxSignature. The requested item may still
be exported.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 RSASSA-PKCS1-v1.5 algorithm used.
WFS_PIN_SIGN_RSASSA_PSS RSASSA-PSS algorithm used.

Output Param LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT lpExportRSAEPPSignedItemOutput;

CWA 16926-6:2015 (E)

150

typedef struct _wfs_pin_export_rsa_epp_signed_item_output
 {
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxSelfSignature;
 LPWFSXDATA lpxSignature;
 } WFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT,
 *LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

lpxValue
If a public key was requested then lpxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then lpxValue
contains the PIN’s Security Item, which may be vendor specific.

lpxSelfSignature
If a public key was requested then lpxSelfSignature contains the RSA signature of the public key
exported, generated with the key-pair’s private component. NULL can be returned when key Self-
Signatures are not supported/required.

lpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when signatures are
not supported/required.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_NORSAKEYPAIR The PIN device does not have a private key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_KEYNOTFOUND The data item identified by lpsName was not
found.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 16926-6:2020 (E)

151

5.4 Remote Key Loading with Certificates

This section contains commands that are used for Remote Key Loading with Certificates. Applications wishing to
use such functionality must use these commands.

5.4.1 WFS_CMD_PIN_LOAD_CERTIFICATE

Description This command is used to load a host certificate or to load a new encryptor certificate from a
Certificate Authority to make remote key loading possible. This command can be called only once
if there are no plans for a new CA to take over the duties. If a new CA does take over the duties,
then this command should be called after the WFS_CMD_PIN_REPLACE_CERTIFICATE
command. The type of certificate (Primary or Secondary) to be loaded will be embedded within
the actual certificate structure.

Input Param LPWFSPINLOADCERTIFICATE lpLoadCertificate;
typedef struct _wfs_pin_load_certificate
 {
 LPWFSXDATA lpxLoadCertificate;
 } WFSPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE

lpxLoadCertificate
Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 using the degenerate
certificate only case of the signed-data content type in which the inner content’s data file is
omitted and there are no signers.

Output Param LPWFSPINLOADCERTIFICATEOUTPUT lpLoadCertificateOutput;
typedef struct _wfs_pin_load_certificate_output
 {
 LPWFSXDATA lpxCertificateData;
 } WFSPINLOADCERTIFICATEOUTPUT, *LPWFSPINLOADCERTIFICATEOUTPUT;

lpxCertificateData
Pointer to a PKCS #7 structure using a Digested-data content type. The digest parameter should
contain the thumb print value.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_INVALIDCERTSTATE The certificate module is in a state in which

the request is invalid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_CERTIFICATE_CHANGE The certificate module state has changed.

Comments None.

CWA 16926-6:2015 (E)

152

5.4.2 WFS_CMD_PIN_GET_CERTIFICATE

Description This command is used to read out the encryptor’s certificate, which has been signed by the trusted
Certificate Authority and is sent to the host. This command only needs to be called once if no new
Certificate Authority has taken over. The output of this command will specify in the PKCS #7
message the resulting Primary or Secondary certificate.

Input Param LPWFSPINGETCERTIFICATE lpGetCertificate;
typedef struct _wfs_pin_get_certificate
 {
 WORD wGetCertificate;
 } WFSPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

wGetCertificate
Specifies which public key certificate is requested. If the WFS_INF_PIN_STATUS command
indicates Primary Certificates are accepted, then the Primary Public Encryption Key or the
Primary Public Verification Key will be read out. If the WFS_INF_PIN_STATUS command
indicates Secondary Certificates are accepted, then the Secondary Public Encryption Key or the
Secondary Public Verification Key will be read out.

Value Meaning
WFS_PIN_PUBLICENCKEY The corresponding encryption key is to be

returned.
WFS_PIN_PUBLICVERIFICATIONKEY The corresponding verification key is to be

returned.
WFS_PIN_PUBLICHOSTKEY The host public key is to be returned.

Output Param LPWFSPINGETCERTIFICATEOUTPUT lpGetCertificateOutput;
typedef struct _wfs_pin_get_certificate_output
 {
 LPWFSXDATA lpxCertificate;
 } WFSPINGETCERTIFICATEOUTPUT, *LPWFSPINGETCERTIFICATEOUTPUT;

lpxCertificate
Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 using the degenerate
certificate only case of the signed-data content type in which the inner content’s data file is
omitted and there are no signers.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_INVALIDCERTSTATE The certificate module is in a state in which
the request is invalid.

WFS_ERR_PIN_KEYNOTFOUND The specified public key was not found.

Events None.

Comments None.

CWA 16926-6:2020 (E)

153

5.4.3 WFS_CMD_PIN_REPLACE_CERTIFICATE

Description This command is used to replace the existing primary or secondary Certificate Authority
certificate already loaded into the encryptor. This operation must be done by an Initial Certificate
Authority or by a Sub-Certificate Authority. These operations will replace either the primary or
secondary Certificate Authority public verification key inside of the encryptor. After this
command is complete, the application should send the WFS_CMD_PIN_LOAD_CERTIFICATE
and WFS_CMD_GET_CERTIFICATE commands to ensure that the new HOST and the
encryptor have all the information required to perform the remote key loading process.

Input Param LPWFSPINREPLACECERTIFICATE lpReplaceCertificate;
typedef struct _wfs_pin_replace_certificate
 {
 LPWFSXDATA lpxReplaceCertificate;
 } WFSPINREPLACECERTIFICATE, *LPWFSPINREPLACECERTIFICATE;

lpxReplaceCertificate
Pointer to the PKCS # 7 message that will replace the current Certificate Authority. The outer
content uses the Signed-data content type, the inner content is a degenerate certificate only
content containing the new CA certificate and Inner Signed Data type The certificate should be in
a format represented in DER encoded ASN.1 notation.

Output Param LPWFSPINREPLACECERTIFICATEOUTPUT lpReplaceCertificateOuput
typedef struct _wfs_pin_replace_certificate_output
 {
 LPWFSXDATA lpxNewCertificateData;
 } WFSPINREPLACECERTIFICATEOUTPUT,
 *LPWFSPINREPLACECERTIFICATEOUTPUT;

lpxNewCertificateData
Pointer to a PKCS #7 structure using a Digested-data content type. The digest parameter should
contain the thumb print value.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_INVALIDCERTSTATE The certificate module is in a state in which

the request is invalid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_CERTIFICATE_CHANGE The certificate module state has changed.

Comments None.

CWA 16926-6:2015 (E)

154

5.4.4 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY

Description This command is used to load a Key Transport Key that is either a single-length, double-length or
triple-length DES key into the encryptor. The Key Transport Key should be destroyed if the entire
process is not completed. In addition, a new Key Transport Key should be generated each time
this protocol is executed. This method ends the Key Exchange process.

Input Param LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY lpImportRSAEncipheredPKCS7Key;
typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key
 {
 LPWFSXDATA lpxImportRSAKeyIn;
 LPSTR lpsKey;
 DWORD dwUse;
 }WFSPINIMPORTRSAENCIPHEREDPKCS7KEY,
 *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY;

lpxImportRSAKeyIn
Pointer to a binary encoded PKCS #7 represented in DER encoded ASN.1 notation. This allows
the Host to verify that key was imported correctly and to the correct encryptor. The message has
an outer Signed-data content type with the SignerInfo encryptedDigest field containing the
HOST’s signature. The random numbers are included as authenticatedAttributes within the
SignerInfo. The inner content is an Enveloped-data content type. The ATM identifier is included
as the issuerAndSerialNumber within the RecipientInfo. The enciphered KTK is included within
RecipientInfo. The encryptedContent is omitted.

lpsKey
Specifies the name of the key to be stored.

dwUse
Specifies the type of access for which the key can be used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key can be used for encryption/decryption.
WFS_PIN_USEFUNCTION Key can be used for PIN functions.
WFS_PIN_USEMACING Key can be used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USENODUPLICATE Key can be imported only once.
WFS_PIN_USESVENCKEY Key is used as CBC Start Value encryption

key.
WFS_PIN_USEANSTR31MASTER Key can be used for importing keys

packaged within an ANS TR-31 key block.
WFS_PIN_USERESTRICTEDKEYENCKEY Key is used as

WFS_PIN_USEKEYENCKEY key whose
later subsequently derived keys inherit and
are restricted to a single use. To express this
the WFS_PIN_USERESTRICTED-
KEYENCKEY use must be combined with
the use WFS_PIN_USEKEYENCKEY and
must additionally be combined with the use
that the later subsequently derived keys will
have. See also examples in section 8.7.

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored. WFS_CMD_PIN_IMPORT_KEY, WFS_CMD_PIN_IMPORT_KEY_EX,
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY can be used to delete a key that
has been imported with this command. The equivalent commands in the signature scheme must
not be used to delete a key imported through the certificate scheme.

Output Param LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT
lpImportRSAEncipheredKeyOut;

CWA 16926-6:2020 (E)

155

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_output
 {
 WORD wKeyLength;
 LPWFSXDATA lpxRSAData;
 }WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT,
 *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:

Value Meaning
WFS_PIN_KEYSINGLE The imported key is single length.
WFS_PIN_KEYDOUBLE The imported key is double length.
WFS_PIN_KEYTRIPLE The imported key is triple length.

lpxRSAData
Pointer to a binary encoded PKCS #7, represented in DER encoded ASN.1 notation. The message
has an outer Signed-data content type with the SignerInfo encryptedDigest field containing the
ATM’s signature. The random numbers are included as authenticatedAttributes within the
SignerInfo. The inner content is a data content type, which contains the HOST identifier as an
issuerAndSerialNumber sequence.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_USEVIOLATION The specified use conflicts with a previously

for the same key specified one.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments The following is a generic structure of how the lpxImportRSAIn field is structured regarding the
outer signed data content type and the inner content as an Envelope-data content type:
ContentInfo ::= SEQUENCE
{
 contentType ContentType = signedData
 content
 SignedData ::= SEQUENCE
 {
 version Version,
 DigestAlgorithms DigestAlgorithmIdentifiers,
 contentInfo ContentInfo ::= SEQUENCE,
 {
 contentType ContentType = EnvelopedData
 content
 :::
 }
 }
}

CWA 16926-6:2015 (E)

156

5.4.5 WFS_CMD_PIN_LOAD_CERTIFICATE_EX

Description This command is used to load a host certificate to make remote key loading possible. This
command can be used to load a host certificate when there is not already one present in the
encryptor as well as replace the existing host certificate with a new host certificate. The type of
certificate (Primary or Secondary) to be loaded will be embedded within the actual certificate
structure.

Input Param LPWFSPINLOADCERTIFICATEEX lpLoadCertificateEx;
typedef struct _wfs_pin_load_certificate_ex
 {
 DWORD dwLoadOption;
 DWORD dwSigner;
 LPWFSXDATA lpxCertificateData;
 } WFSPINLOADCERTIFICATEEX, *LPWFSPINLOADCERTIFICATEEX

dwLoadOption
Specifies the method to use to load the certificate, with one of the following values:

Value Meaning
WFS_PIN_LOAD_NEWHOST Load a new Host certificate, where one has

not already been loaded.
WFS_PIN_LOAD_REPLACEHOST Replace (or rebind) the PIN device to a new

Host certificate, where the new Host
certificate is signed by dwSigner.

dwSigner
Specifies the signer of the certificate to be loaded, with one of the following values:

Value Meaning
WFS_PIN_SIGNER_CERTHOST The certificate to be loaded is signed by the

current Host. Cannot be combined with
WFS_PIN_LOAD_NEWHOST.

WFS_PIN_SIGNER_CA The certificate to be loaded is signed by the
Certificate Authority (CA).

WFS_PIN_SIGNER_HL The certificate to be loaded is signed by the
Higher Level (HL) Authority.

lpxCertificateData
Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation.

For WFS_PIN_LOAD_NEWHOST, this data should be in a binary encoded PKCS #7 using the
“degenerate certificate only” case of the signed-data content type in which the inner content’s data
file is omitted and there are no signers.

For WFS_PIN_LOAD_REPLACEHOST, the message has an outer SignedData content type with
the SignerInfo encryptedDigest field containing the signature of dwSigner. The inner content is
binary encoded PKCS#7 using the degenerate certificate.

The optional CRL field may or may not be included in the PKCS#7 signedData structure.

Output Param LPWFSPINLOADCERTIFICATEEXOUTPUT lpLoadCertificateExOutput;
typedef struct _wfs_pin_load_certificate_ex_output
 {
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxRSAData;
 } WFSPINLOADCERTIFICATEEXOUTPUT, *LPWFSPINLOADCERTIFICATEEXOUTPUT;

dwRSAKeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be one of the
following flags:

Value Meaning
WFS_PIN_RSA_KCV_NONE No check value is returned in lpxRSAData.

CWA 16926-6:2020 (E)

157

WFS_PIN_RSA_KCV_SHA1 lpxRSAData contains a SHA-1 digest of the
public key.

WFS_PIN_RSA_KCV_SHA256 lpxRSAData contains a SHA-256 digest of
the public key.

lpxRSAData
Pointer to a PKCS #7 structure using a Digested-data content type. The digest parameter should
contain the thumb print value calculated by the algorithm specified by dwRSAKeyCheckMode. If
dwRSAKeyCheckMode is WFS_PIN_RSA_KCV_NONE, then this field must be NULL.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_INVALIDCERTSTATE The certificate module is in a state in which

the request is invalid.
WFS_ERR_PIN_SIGNATUREINVALID The signature in the input data is invalid.
WFS_ERR_PIN_RANDOMINVALID The encrypted random number in the input

data does not match the one previously
provided by the PIN device. Only applies to
load options that use a random number.

WFS_ERR_PIN_MODENOTSUPPORTED The specified combination of dwLoadOption
and dwSigner is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_CERTIFICATE_CHANGE The certificate module state has changed.

Comments The WFS_PIN_LOAD_NEWHOST load option combined with the WFS_PIN_SIGNER_CA
signer is equivalent to the WFS_CMD_PIN_LOAD_CERTIFICATE command. This option will
accomplish the KDH Bind Phase described by X9 TR34-2012 [Ref. 42].

The WFS_PIN_LOAD_REPLACEHOST load option combined with the
WFS_PIN_SIGNER_CERTHOST signer can be used to support the KDH Rebind Phase
described by X9 TR34-2012 [Ref. 42]. Before executing the
WFS_CMD_PIN_LOAD_CERTIFICATE_EX with this option, a random number must be
requested using the WFS_CMD_PIN_START_KEY_EXCHANGE command. The random
number must then be incorporated into the input message of the
WFS_CMD_PIN_LOAD_CERTIFICATE_EX command.

The WFS_PIN_LOAD_REPLACEHOST load option combined with the
WFS_PIN_SIGNER_HL signer can be used to support the Higher Level Authority Rebind Phase
described by X9 TR34-2012 [Ref. 42]. Before executing the
WFS_CMD_PIN_LOAD_CERTIFICATE_EX with this option, a random number must be
requested using the WFS_CMD_PIN_START_KEY_EXCHANGE command. The random
number is not used to construct the input message of the
WFS_CMD_PIN_LOAD_CERTIFICATE_EX command, and the random number stored in the
EPP is ignored by the EPP during execution of this load option.

CWA 16926-6:2015 (E)

158

5.4.6 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX

Description This command is used to load a Key Transport Key that is either a single-length, double-length or
triple-length DES key or an AES-128, AES-192, or AES-256 bit key into the encryptor. The Key
Transport Key should be destroyed if the entire process is not completed. In addition, a new Key
Transport Key should be generated each time this protocol is executed. This method ends the Key
Exchange process.

Input Param LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX
lpImportRSAEncipheredPKCS7KeyEx;
typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_ex
 {
 LPWFSXDATA lpxImportRSAKeyIn;
 LPSTR lpsKey;
 DWORD dwUse;
 DWORD dwCRKLLoadOption;
 } WFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX,
 *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX;

lpxImportRSAKeyIn
Pointer to a binary encoded PKCS #7 represented in DER encoded ASN.1 notation. This allows
the Host to verify that key was imported correctly and to the correct encryptor. The message has
an outer Signed-data content type with the SignerInfo encryptedDigest field containing the
HOST’s signature. The inner content is an Enveloped-data content type. The ATM identifier is
included as the issuerAndSerialNumber within the RecipientInfo.

If dwCRKLLoadOption is WFS_PIN_CRKLLOAD_RANDOM or
WFS_PIN_CRKLLOAD_RANDOM_CRL, the random numbers are included as
authenticatedAttributes within the SignerInfo.

If dwCRKLLoadOption is WFS_PIN_CRKLLOAD_NORANDOM or
WFS_PIN_CRKLLOAD_NORANDOM_CRL, a timestamp is included as an
authenticatedAttribute within the SignerInfo.

lpsKey
Specifies the name of the key to be stored.

dwUse
Specifies the type of access for which the key can be used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key can be used for encryption/decryption.
WFS_PIN_USEFUNCTION Key can be used for PIN functions.
WFS_PIN_USEMACING Key can be used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USENODUPLICATE Key can be imported only once.
WFS_PIN_USESVENCKEY Key is used as CBC Start Value encryption

key.
WFS_PIN_USEANSTR31MASTER Key can be used for importing keys

packaged within an ANS TR-31 key block.

If dwCRKLLoadOption is WFS_PIN_CRKLLOAD_NORANDOM_CRL or
WFS_PIN_CRKLLOAD_RANDOM_CRL, the usage is embedded in the lpxImportRSAKeyIn
message. In this case, dwUse must be zero.

If the intention is to delete the key then dwUse must be zero and dwCRKLLoadOption must also
be zero. In this case, lpxImportRSAKeyIn is ignored. WFS_CMD_PIN_IMPORT_KEY,
WFS_CMD_PIN_IMPORT_KEY_EX,
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY, and
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX can be used to delete a key
that has been imported with this command. The equivalent commands in the signature scheme
must not be used to delete a key imported through the certificate scheme.

dwCRKLLoadOption
Specifies the method to use to load the Key Transport Key, with one of the following values:

CWA 16926-6:2020 (E)

159

Value Meaning
WFS_PIN_CRKLLOAD_NORANDOM Import a Key Transport Key without

generating and using a random number.
WFS_PIN_CRKLLOAD_NORANDOM_CRL Import a Key Transport Key with a

Certificate Revocation List appended to the
lpxImportRSAKeyIn parameter. A random
number is not generated nor used.

WFS_PIN_CRKLLOAD_RANDOM Import a Key Transport Key by generating
and using a random number.

WFS_PIN_CRKLLOAD_RANDOM_CRL Import a Key Transport Key with a
Certificate Revocation List appended to the
lpxImportRSAKeyIn parameter. A random
number is generated and used.

Output Param LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT
lpImportRSAEncipheredKeyExOut;
typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_ex_output
 {
 WORD wKeyLength;
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxRSAData;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
 }WFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT,
 *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT;

wKeyLength
If the key loaded is a DES or 3DES key, then this parameter specifies the length of the key loaded
as one of the following flags:

Value Meaning
WFS_PIN_KEYSINGLE The imported key is single length.
WFS_PIN_KEYDOUBLE The imported key is double length.
WFS_PIN_KEYTRIPLE The imported key is triple length.

If the key length is not reported then this will be zero.

dwRSAKeyCheckMode
Defines the algorithm used to generate the signature contained in the message (lpxRSAData) sent
to the host (see section 8.2.2 step 2c). It can be one of the following flags:

Value Meaning
WFS_PIN_RSA_KCV_NONE No check value is returned in lpxRSAData.
WFS_PIN_RSA_KCV_SHA1 lpxRSAData contains a SHA-1 digest of the

public key.
WFS_PIN_RSA_KCV_SHA256 lpxRSAData contains a SHA-256 digest of

the public key.

lpxRSAData
If dwCRKLLoadOption is WFS_PIN_CRKLLOAD_NORANDOM or
WFS_PIN_CRKLLOAD_RANDOM, this data is a pointer to a binary encoded PKCS #7,
represented in DER encoded ASN.1 notation. The message has an outer Signed-data content type
with the SignerInfo encryptedDigest field containing the ATM’s signature. The random numbers
are included as authenticatedAttributes within the SignerInfo. The inner content is a data content
type, which contains the HOST identifier as an issuerAndSerialNumber sequence.

If dwRSAKeyCheckMode is WFS_PIN_RSA_KCV_NONE, then this field must be NULL.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value Meaning
WFS_PIN_KCVNONE There is no key check value provided.

CWA 16926-6:2015 (E)

160

WFS_PIN_KCVSELF The key check value (KCV) is created by an
encryption of the key with itself. For the
description refer to the
WFS_PIN_KCVSELF literal described in
the Capabilities.

WFS_PIN_KCVZERO The key check value (KCV) is created by
encrypting a zero value with the key. Unless
otherwise specified, ECB encryption is used.
The encryption algorithm used (i.e. DES,
3DES, AES) is determined by the type of
key used to generate the KCV.

lpxKeyCheckValue
Contains the key verification code data that can be used for verification of the loaded key, NULL
if device does not have that capability.

If wKeyCheckMode is WFS_PIN_KCVNONE, then this field must be NULL.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_INVALIDKEYLENGTH The length of the Key Transport Key is not
valid.

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

WFS_ERR_PIN_FORMATINVALID The format of the message or key block is
invalid.

WFS_ERR_PIN_CONTENTINVALID The content of the message or key block is
invalid.

WFS_ERR_PIN_USEVIOLATION The specified use is not supported, or if a
key with the same name has already been
loaded, the specified use conflicts with the
use of the key previously loaded.

WFS_ERR_PIN_RANDOMINVALID The encrypted random number in the input
data does not match the one previously
provided by the PIN device. Only applies to
CRKL load options that use a random
number.

WFS_ERR_PIN_SIGNATUREINVALID The signature in the input data is invalid.
WFS_ERR_PIN_INVALIDCERTSTATE A Host certificate has not been previously

loaded.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments The WFS_PIN_CRKLLOAD_NORANDOM_CRL load option will accomplish the TDEA
Symmetric Key Transport Phase – One-Pass Protocol described by X9 TR34-2012 [Ref. 42]. A
random number does not need to be requested via the
WFS_CMD_PIN_START_KEY_EXCHANGE command before executing this option.

 The WFS_PIN_CRKLLOAD_RANDOM load option is equivalent to the functionality available
with the WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY command. A random
number must be requested via the WFS_CMD_PIN_START_KEY_EXCHANGE command
before executing this option. The random number is then incorporated into the constructed
lpxImportRSAKeyIn input message.

CWA 16926-6:2020 (E)

161

 The WFS_PIN_CRKLLOAD_RANDOM_CRL load option will accomplish the TDEA
Symmetric Key Transport Phase – Two Pass Protocol described by X9 TR34-2012 [Ref. 42]. This
option performs the same functionality as the WFS_PIN_CRKLLOAD_RANDOM option with
the addition of the use of the Certificate Revocation List (CRL). Refer to X9 TR34-2012 [Ref. 42]
for the validation that the PIN device must perform on the CRL.

CWA 16926-6:2015 (E)

162

5.5 EMV

This section defines the commands needed to import the EMV RSA keys provided either by a Certification
Authority (for example VISA or MASTERCARD EUROPE) or by the chip card itself (ISSUER KEY, ICC KEY
and ICC PIN KEY).

5.5.1 WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY

Description The Certification Authority and the Chip Card RSA public keys needed for EMV are loaded or
deleted in/from the encryption module. This command is similar to the
WFS_CMD_PIN_IMPORT_KEY_EX command, but it is specifically designed to address the
key formats and security features defined by EMV. Mainly the extensive use of “signed
certificate” or “EMV certificate” (which is a compromise between signature and a pure
certificate) to provide the public key is taken in account. The Service Provider is responsible for
all EMV public key import validation. Once loaded, the Service Provider is not responsible for
key/certificate expiry, this is an application responsibility.

Input Param LPWFSPINEMVIMPORTPUBLICKEY lpEMVImportPublicKey;
typedef struct _wfs_pin_emv_import_public_key
 {
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wImportScheme;
 LPWFSXDATA lpxImportData;
 LPSTR lpsSigKey;
 } WFSPINEMVIMPORTPUBLICKEY, *LPWFSPINEMVIMPORTPUBLICKEY;

lpsKey
Specifies the name of key being loaded.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning
WFS_PIN_USERSAPUBLIC Key is used as a public key for RSA

encryption including EMV PIN block
creation.

WFS_PIN_USERSAPUBLICVERIFY Key is used as a public key for RSA
signature verification and/or data decryption.
If dwUse equals zero the specified key is
deleted. In that case all parameters but
lpsKey are ignored.

wImportScheme
Defines the import scheme used. Contains one of the following values:

Value Meaning
WFS_PIN_EMV_IMPORT_PLAIN_CA This scheme is used by VISA. A plain text

CA public key is imported with no
verification. The two parts of the key
(modulus and exponent) are passed in clear
mode as a DER encoded PKCS#1 public
key. The key is loaded directly in the
security module.

WFS_PIN_EMV_IMPORT_CHKSUM_CA This scheme is used by VISA. A plain text
CA public key is imported using the EMV
2000 Book II verification algorithm and it is
verified before being loaded in the security
module. (See [Ref. 4] under references
section for this document).

WFS_PIN_EMV_IMPORT_EPI_CA This scheme is used by MasterCard Europe.
A CA public key is imported using the self-
signed scheme defined in [Ref. 5].

CWA 16926-6:2020 (E)

163

WFS_PIN_EMV_IMPORT_ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, reference 4. (See
[Ref. 4] under references section for this
document).

WFS_PIN_EMV_IMPORT_ICC An ICC public key is imported as defined in
EMV 2000 Book II, reference 4. (See [Ref.
4] under references section for this
document).

WFS_PIN_EMV_IMPORT_ICC_PIN An ICC PIN public key is imported as
defined in EMV 2000 Book II, reference 4.
(See [Ref. 4] under references section for
this document).

WFS_PIN_EMV_IMPORT_PKCSV1_5_CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

lpxImportData
The lpxImportData parameter contains all the necessary data to complete the import using the
scheme specified within wImportScheme.

If wImportScheme is WFS_PIN_EMV_IMPORT_PLAIN_CA then lpxImportData contains a
DER encoded PKCS#1 public key. No verification is possible. lpsSigKey is ignored.

If wImportScheme is WFS_PIN_EMV_IMPORT_CHKSUM_CA then lpxImportData contains
table 23 data, as specified in EMV 2000 Book 2 (See Ref. [4] under the reference section for this
document). The plain text key is verified as defined within EMV 2000 Book 2, page 73.
lpsSigKey is ignored (See Ref. [4] under the reference section for this document).

If wImportScheme is WFS_PIN_EMV_IMPORT_EPI_CA then lpxImportData contains the
concatenation of tables 4 and 13, as specified in reference 5, Europay International, EPI CA
Module Technical – Interface specification Version 1.4. These tables are also described in the
EMV Support Appendix. The self-signed public key is verified as defined by the reference
document. lpsSigKey is ignored.

If wImportScheme is WFS_PIN_EMV_IMPORT_ISSUER then lpxImportData contains the EMV
public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length –
EMV Tag value: ‘9F32’), the EMV certificate length (1 byte), the EMV certificate value (variable
length – EMV Tag value: ‘90’), the remainder length (1 byte). The remainder value (variable
length – EMV Tag value: ‘92’), the PAN length (1 byte) and the PAN value (variable length –
EMV Tag value: ‘5A’). The Service Provider will compare the leftmost three to eight hex digits
(where each byte consists of two hex digits) of the PAN to the Issuer Identification Number
retrieved from the certificate. For more explanations, the reader can refer to EMVCo, Book2 –
Security & Key Management Version 4.0, Table 4 (See [Ref. 4] under the reference section for
this document). lpsSigKey defines the previously loaded key used to verify the signature.

If wImportScheme is WFS_PIN_EMV_IMPORT_ICC then lpxImportData contains the EMV
public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length– EMV
Tag value: ‘9F47’), the EMV certificate length (1 byte), the EMV certificate value (variable
length – EMV Tag value:’9F46’), the remainder length (1 byte), the remainder value (variable
length – EMV Tag value: ‘9F48’), the SDA length (1 byte), the SDA value (variable length), the
PAN length (1 byte) and the PAN value (variable length – EMV Tag value: ‘5A’). The Service
Provider will compare the PAN to the PAN retrieved from the certificate. For more explanations,
the reader can refer to EMVCo, Book2 – Security & Key Management Version 4.0, Table 9 (See
[Ref. 4] under the reference section for this document). lpsSigKey defines the previously loaded
key used to verify the signature.

CWA 16926-6:2015 (E)

164

If wImportScheme is WFS_PIN_EMV_IMPORT_ICC_PIN then lpxImportData contains the
EMV public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of: the key exponent length (1 byte), the key exponent value (variable length –
EMV Tag value: ‘9F2E’), the EMV certificate length (1 byte), the EMV certificate value (variable
length – EMV Tag value:’9F2D’), the remainder length (1 byte), the remainder value (variable
length – EMV Tag value: ‘9F2F’), the SDA length (1 byte), the SDA value (variable length), the
PAN length (1 byte) and the PAN value (variable length – EMV Tag value: ‘5A’). The Service
Provider will compare the PAN to the PAN retrieved from the certificate. For more explanations,
the reader can refer to EMVCo, Book2 – Security & Key Management Version 4.0, Table 9 (See
[Ref. 4] under the reference section for this document). lpsSigKey defines the previously loaded
key used to verify the signature.

If wImportScheme is WFS_PIN_EMV_IMPORT_PKCSV1_5_CA then lpxImportData contains
the CA public key signed with the previously loaded public key specified in lpsSigKey.
lpxImportData consists of the concatenation of EMV 2000 Book II Table 23(reference 4) + 8 byte
random number + Signature (See Ref. [4] under the reference section for this document). The 8-
byte random number is not used for validation; it is used to ensure the signature is unique. The
Signature consists of all the bytes in the lpxImportData buffer after table 23 and the 8-byte
random number.

lpsSigKey
This field specifies the name of the previously loaded key used to verify the signature, as detailed
in the descriptions above.

Output Param LPWFSPINEMVIMPORTPUBLICKEYOUTPUT lpEMVImportPublicKeyOutput;
typedef struct _wfs_pin_emv_import_public_key_output
 {
 LPSTR lpsExpiryDate;
 } WFSPINEMVIMPORTPUBLICKEYOUTPUT,
 *LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

lpsExpiryDate
Contains the expiry date of the certificate in the following format MMYY. If no expiry date
applies then lpsExpiryDate is NULL.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

WFS_ERR_PIN_EMV_VERIFY_FAILED The verification of the imported key failed
and the key was discarded.

WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments This command only imports one key per use. If the same key value has to be imported for two
different uses, this command must be called twice and different key names must be specified.

CWA 16926-6:2020 (E)

165

5.5.2 WFS_CMD_PIN_DIGEST

Description: This command is used to compute a hash code on a stream of data using the specified hash
algorithm. This command can be used to verify EMV static and dynamic data.

Input Param LPWFSPINDIGEST lpDigest;
typedef struct _wfs_pin_digest
 {
 WORD wHashAlgorithm;
 LPWFSXDATA lpxDigestInput;
 } WFSPINDIGEST, *LPWFSPINDIGEST;

wHashAlgorithm
Specifies which hash algorithm should be used to calculate the hash. See the Capabilities section
for valid algorithms.

lpxDigestInput
Pointer to the structure that contains the length and the data to be hashed.

Output Param LPWFSPINDIGESTOUTPUT lpDigestOutput;
typedef struct _wfs_pin_digest_output
 {
 LPWFSXDATA lpxDigestOutput;
 } WFSPINDIGESTOUTPUT, *LPWFSPINDIGESTOUTPUT;

lpxDigestOuput
Pointer to the structure that contains the length and the data containing the calculated hash.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

Events None.

Comments None.

CWA 16926-6:2015 (E)

166

6. Events

6.1 WFS_EXEE_PIN_KEY

Description This event specifies that any active key has been pressed at the PIN pad. It is used if the device
has no internal display unit and the application has to manage the display of the entered digits. It
is the responsibility of the application to identify the mapping between the FDK code and the
physical location of the FDK.

Event Param LPWFSPINKEY lpKey;
typedef struct _wfs_pin_key
 {
 WORD wCompletion;
 ULONG ulDigit;
 } WFSPINKEY, *LPWFSPINKEY;

wCompletion
Specifies the reason for completion or continuation of the entry. Possible values are:
(see command WFS_CMD_PIN_GET_PIN)

ulDigit
Specifies the digit entered by the user. When working in encryption mode or secure key entry
mode (WFS_CMD_PIN_GET_PIN and WFS_CMD_PIN_SECUREKEY_ENTRY), the value of
this field is 0x00 for the function keys 0-9 and A-F. Otherwise, for each key pressed, the
corresponding FK or FDK mask value is stored in this field.

Comments None.

CWA 16926-6:2020 (E)

167

6.2 WFS_SRVE_PIN_INITIALIZED

Description This event specifies that, as a result of a WFS_CMD_PIN_INITIALIZATION, the encryption
module is now initialized and the master key (where required) and any other initial keys are
loaded; ready to import other keys.

Event Param LPWFSPININIT lpInit;

lpInit
For a definition of the WFSPININIT structure see command
WFS_CMD_PIN_INITIALIZATION.

Comments None.

CWA 16926-6:2015 (E)

168

6.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS

Description This event specifies that an error occurred accessing an encryption key. Possible situations for
generating this event are listed in the description of lErrorCode.

Event Param LPWFSPINACCESS lpAccess;
typedef struct _wfs_pin_access
 {
 LPSTR lpsKeyName;
 LONG lErrorCode;
 } WFSPINACCESS, *LPWFSPINACCESS;

lpsKeyName
Specifies the name of the key that caused the error.

lErrorCode
Specifies the type of illegal key access that occurred. Possible values are:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not loaded or

attempting to delete a non-existent key.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_ALGORITHMNOTSUPP The specified algorithm is not supported by

this key.
WFS_ERR_PIN_DUKPTOVERFLOW The DUKPT KSN encryption counter has

overflowed to zero. A new IPEK must be
loaded.

Comments None.

CWA 16926-6:2020 (E)

169

6.4 WFS_SRVE_PIN_OPT_REQUIRED

Description This event indicates that the online date/time stored in a HSM has been reached.

Event Param LPWFSPINHSMIDENTIFIER lpOPTRequired;
typedef struct _wfs_pin_hsm_identifier
{
 WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;

wHSMSerialNumber
Specifies the serial number of the logical HSM where the online time has been reached. If logical
HSMs are not supported then lpOPTRequired is NULL. The wHSMSerialNumber value is
encoded as a standard binary value (i.e. it is not BCD).

Comments This event may be triggered by the clock reaching a previously stored online time or by the online
time being set to a time that lies in the past.

The online time may be set by the command WFS_CMD_PIN_HSM_SET_TDATA or by a
command WFS_CMD_PIN_SECURE_MSG_RECEIVE that contains a message from a host
system containing a new online date/time.

The event does not mean that any keys or other data in the HSM is out of date now. It just
indicates that the terminal should communicate with a “Personalisierungsstelle” as soon as
possible using the commands WFS_CMD_PIN_SECURE_MSG_SEND / _RECEIVE and
wProtocol=WFS_PIN_PROTISOPS.

CWA 16926-6:2015 (E)

170

6.5 WFS_SRVE_PIN_CERTIFICATE_CHANGE

Description This event indicates that the certificate module state has changed from Primary to Secondary.

Event Param LPWORD lpwCertificateChange;

lpwCertificateChange
Specifies change of the certificate state inside of the encryptor as one of the following:

Value Meaning
WFS_PIN_CERT_SECONDARY The certificate state of the encryptor is now

Secondary and Primary Certificates will no
longer be accepted.

Comments None.

CWA 16926-6:2020 (E)

171

6.6 WFS_SRVE_PIN_HSM_TDATA_CHANGED

Description This event indicates that one of the values of the terminal data has changed (these are the data that
can be set using WFS_CMD_PIN_HSM_SET_TDATA). I.e. this event will be sent especially
when the online time or the HSM status is changed because of a WFS_CMD_PIN_HSM_INIT
command or an OPT online dialog (WFS_CMD_PIN_SECURE_MSG_SEND/_RECEIVE with
WFS_PIN_PROTISOPS).

On configurations with multiple logical HSMs, the serial number tag must be included within the
data so that the logical HSM that has changed can be identified.

Event Param LPWFSXDATA lpxTData;

lpxTData
Contains the parameter settings as a series of “tag/length/value” items. See command
WFS_CMD_PIN_HSM_SET_TDATA for the tags supported.

Comments None.

CWA 16926-6:2015 (E)

172

6.7 WFS_SRVE_PIN_HSM_CHANGED

Description This event indicates that the currently active logical HSM has been changed. This event will be
triggered when an application changes the current HSM through the
WFS_CMD_PIN_SET_LOGICAL_HSM command. This event is not generated if the HSM is
not changed.

Event Param LPWFSPINHSMIDENTIFIER lpHSMChanged;
typedef struct _wfs_pin_hsm_identifier
{
 WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;

wHSMSerialNumber
Specifies the serial number of the logical HSM that has been made active. The
wHSMSerialNumber value is encoded as a standard binary value (i.e. it is not BCD).

Comments None.

CWA 16926-6:2020 (E)

173

6.8 WFS_EXEE_PIN_ENTERDATA

Description This mandatory event notifies the application when the device is ready for the user to start
entering data.

Event Param None.

Comments None.

CWA 16926-6:2015 (E)

174

6.9 WFS_SRVE_PIN_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSPINDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_pin_device_position
 {
 WORD wPosition;
 } WFSPINDEVICEPOSITION, *LPWFSPINDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_PIN_DEVICEINPOSITION The device is in its normal operating

position.
WFS_PIN_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_PIN_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-6:2020 (E)

175

6.10 WFS_SRVE_PIN_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSPINPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_pin_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSPINPOWERSAVECHANGE, *LPWFSPINPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode, this device
will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-6:2015 (E)

176

6.11 WFS_EXEE_PIN_LAYOUT

Description This event sends the layout for a specific keyboard entry mode if the layout has changed since it
was loaded (i.e. if a float action is being used).

Event Param LPWFSPINLAYOUT lpLayout;

For the definition of the WFSPINLAYOUT structure see command
WFS_INF_PIN_GET_LAYOUT.

Comments None.

CWA 16926-6:2020 (E)

177

6.12 WFS_EXEE_PIN_DUKPT_KSN

Description This event sends the DUKPT KSN of the key used in the command. The receiving TRSM uses
this to derive the key from the BDK.

Event Param LPWFSPINDUKPTKSN lpKSN;
typedef struct _ wfs_pin_dukpt_ksn
 {

 LPSTR lpsKey;
 LPWFSXDATA lpxKSN;
 } WFSPINDUKPTKSN, *LPWFSPINDUKPTKSN;

lpsKey

Specifies the name of the DUKPT Key derivation key.

lpxKSN
Pointer to the structure that contains the KSN.

Comments None.

CWA 16926-6:2015 (E)

178

7. C - Header File

/**
* *
* xfspin.h XFS - Personal Identification Number Keypad (PIN) definitions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __INC_XFSPIN__H
#define __INC_XFSPIN__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSPINCAPS.wClass */

#define WFS_SERVICE_CLASS_PIN (4)
#define WFS_SERVICE_CLASS_VERSION_PIN (0x2803) /* Version 3.40 */
#define WFS_SERVICE_CLASS_NAME_PIN "PIN"

#define PIN_SERVICE_OFFSET (WFS_SERVICE_CLASS_PIN * 100)

/* PIN Info Commands */

#define WFS_INF_PIN_STATUS (PIN_SERVICE_OFFSET + 1)
#define WFS_INF_PIN_CAPABILITIES (PIN_SERVICE_OFFSET + 2)
#define WFS_INF_PIN_KEY_DETAIL (PIN_SERVICE_OFFSET + 4)
#define WFS_INF_PIN_FUNCKEY_DETAIL (PIN_SERVICE_OFFSET + 5)
#define WFS_INF_PIN_HSM_TDATA (PIN_SERVICE_OFFSET + 6)
#define WFS_INF_PIN_KEY_DETAIL_EX (PIN_SERVICE_OFFSET + 7)
#define WFS_INF_PIN_SECUREKEY_DETAIL (PIN_SERVICE_OFFSET + 8)
#define WFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL (PIN_SERVICE_OFFSET + 9)
#define WFS_INF_PIN_QUERY_PCIPTS_DEVICE_ID (PIN_SERVICE_OFFSET + 10)
#define WFS_INF_PIN_GET_LAYOUT (PIN_SERVICE_OFFSET + 11)
#define WFS_INF_PIN_KEY_DETAIL_340 (PIN_SERVICE_OFFSET + 12)

/* PIN Command Verbs */

#define WFS_CMD_PIN_CRYPT (PIN_SERVICE_OFFSET + 1)
#define WFS_CMD_PIN_IMPORT_KEY (PIN_SERVICE_OFFSET + 3)
#define WFS_CMD_PIN_GET_PIN (PIN_SERVICE_OFFSET + 5)
#define WFS_CMD_PIN_GET_PINBLOCK (PIN_SERVICE_OFFSET + 7)
#define WFS_CMD_PIN_GET_DATA (PIN_SERVICE_OFFSET + 8)
#define WFS_CMD_PIN_INITIALIZATION (PIN_SERVICE_OFFSET + 9)
#define WFS_CMD_PIN_LOCAL_DES (PIN_SERVICE_OFFSET + 10)
#define WFS_CMD_PIN_LOCAL_EUROCHEQUE (PIN_SERVICE_OFFSET + 11)
#define WFS_CMD_PIN_LOCAL_VISA (PIN_SERVICE_OFFSET + 12)
#define WFS_CMD_PIN_CREATE_OFFSET (PIN_SERVICE_OFFSET + 13)
#define WFS_CMD_PIN_DERIVE_KEY (PIN_SERVICE_OFFSET + 14)
#define WFS_CMD_PIN_PRESENT_IDC (PIN_SERVICE_OFFSET + 15)
#define WFS_CMD_PIN_LOCAL_BANKSYS (PIN_SERVICE_OFFSET + 16)
#define WFS_CMD_PIN_BANKSYS_IO (PIN_SERVICE_OFFSET + 17)
#define WFS_CMD_PIN_RESET (PIN_SERVICE_OFFSET + 18)
#define WFS_CMD_PIN_HSM_SET_TDATA (PIN_SERVICE_OFFSET + 19)
#define WFS_CMD_PIN_SECURE_MSG_SEND (PIN_SERVICE_OFFSET + 20)
#define WFS_CMD_PIN_SECURE_MSG_RECEIVE (PIN_SERVICE_OFFSET + 21)
#define WFS_CMD_PIN_GET_JOURNAL (PIN_SERVICE_OFFSET + 22)
#define WFS_CMD_PIN_IMPORT_KEY_EX (PIN_SERVICE_OFFSET + 23)
#define WFS_CMD_PIN_ENC_IO (PIN_SERVICE_OFFSET + 24)

CWA 16926-6:2020 (E)

179

#define WFS_CMD_PIN_HSM_INIT (PIN_SERVICE_OFFSET + 25)
#define WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY (PIN_SERVICE_OFFSET + 26)
#define WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM (PIN_SERVICE_OFFSET + 27)
#define WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY (PIN_SERVICE_OFFSET + 28)
#define WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR (PIN_SERVICE_OFFSET + 29)
#define WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM (PIN_SERVICE_OFFSET + 30)
#define WFS_CMD_PIN_LOAD_CERTIFICATE (PIN_SERVICE_OFFSET + 31)
#define WFS_CMD_PIN_GET_CERTIFICATE (PIN_SERVICE_OFFSET + 32)
#define WFS_CMD_PIN_REPLACE_CERTIFICATE (PIN_SERVICE_OFFSET + 33)
#define WFS_CMD_PIN_START_KEY_EXCHANGE (PIN_SERVICE_OFFSET + 34)
#define WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY (PIN_SERVICE_OFFSET + 35)
#define WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY (PIN_SERVICE_OFFSET + 36)
#define WFS_CMD_PIN_DIGEST (PIN_SERVICE_OFFSET + 37)
#define WFS_CMD_PIN_SECUREKEY_ENTRY (PIN_SERVICE_OFFSET + 38)
#define WFS_CMD_PIN_GENERATE_KCV (PIN_SERVICE_OFFSET + 39)
#define WFS_CMD_PIN_SET_GUIDANCE_LIGHT (PIN_SERVICE_OFFSET + 41)
#define WFS_CMD_PIN_MAINTAIN_PIN (PIN_SERVICE_OFFSET + 42)
#define WFS_CMD_PIN_KEYPRESS_BEEP (PIN_SERVICE_OFFSET + 43)
#define WFS_CMD_PIN_SET_PINBLOCK_DATA (PIN_SERVICE_OFFSET + 44)
#define WFS_CMD_PIN_SET_LOGICAL_HSM (PIN_SERVICE_OFFSET + 45)
#define WFS_CMD_PIN_IMPORT_KEYBLOCK (PIN_SERVICE_OFFSET + 46)
#define WFS_CMD_PIN_POWER_SAVE_CONTROL (PIN_SERVICE_OFFSET + 47)
#define WFS_CMD_PIN_LOAD_CERTIFICATE_EX (PIN_SERVICE_OFFSET + 48)
#define WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX (PIN_SERVICE_OFFSET + 49)
#define WFS_CMD_PIN_DEFINE_LAYOUT (PIN_SERVICE_OFFSET + 50)
#define WFS_CMD_PIN_START_AUTHENTICATE (PIN_SERVICE_OFFSET + 51)
#define WFS_CMD_PIN_AUTHENTICATE (PIN_SERVICE_OFFSET + 52)
#define WFS_CMD_PIN_GET_PINBLOCK_EX (PIN_SERVICE_OFFSET + 53)
#define WFS_CMD_PIN_SYNCHRONIZE_COMMAND (PIN_SERVICE_OFFSET + 54)
#define WFS_CMD_PIN_CRYPT_340 (PIN_SERVICE_OFFSET + 55)
#define WFS_CMD_PIN_IMPORT_KEY_340 (PIN_SERVICE_OFFSET + 56)
#define WFS_CMD_PIN_GET_PINBLOCK_340 (PIN_SERVICE_OFFSET + 57)

/* PIN Messages */

#define WFS_EXEE_PIN_KEY (PIN_SERVICE_OFFSET + 1)
#define WFS_SRVE_PIN_INITIALIZED (PIN_SERVICE_OFFSET + 2)
#define WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS (PIN_SERVICE_OFFSET + 3)
#define WFS_SRVE_PIN_OPT_REQUIRED (PIN_SERVICE_OFFSET + 4)
#define WFS_SRVE_PIN_HSM_TDATA_CHANGED (PIN_SERVICE_OFFSET + 5)
#define WFS_SRVE_PIN_CERTIFICATE_CHANGE (PIN_SERVICE_OFFSET + 6)
#define WFS_SRVE_PIN_HSM_CHANGED (PIN_SERVICE_OFFSET + 7)
#define WFS_EXEE_PIN_ENTERDATA (PIN_SERVICE_OFFSET + 8)
#define WFS_SRVE_PIN_DEVICEPOSITION (PIN_SERVICE_OFFSET + 9)
#define WFS_SRVE_PIN_POWER_SAVE_CHANGE (PIN_SERVICE_OFFSET + 10)
#define WFS_EXEE_PIN_LAYOUT (PIN_SERVICE_OFFSET + 11)
#define WFS_EXEE_PIN_DUKPT_KSN (PIN_SERVICE_OFFSET + 12)

/* values of WFSPINSTATUS.fwDevice */

#define WFS_PIN_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_PIN_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_PIN_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_PIN_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_PIN_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_PIN_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_PIN_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_PIN_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_PIN_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSPINSTATUS.fwEncStat */

#define WFS_PIN_ENCREADY (0)
#define WFS_PIN_ENCNOTREADY (1)
#define WFS_PIN_ENCNOTINITIALIZED (2)
#define WFS_PIN_ENCBUSY (3)
#define WFS_PIN_ENCUNDEFINED (4)
#define WFS_PIN_ENCINITIALIZED (5)
#define WFS_PIN_ENCPINTAMPERED (6)

CWA 16926-6:2015 (E)

180

/* Size and max index of dwGuidLights array */

#define WFS_PIN_GUIDLIGHTS_SIZE (32)
#define WFS_PIN_GUIDLIGHTS_MAX (WFS_PIN_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSPINSTATUS.dwGuidLights [...]
 WFSPINCAPS.dwGuidLights [...]
*/

#define WFS_PIN_GUIDANCE_PINPAD (0)

/* Values of WFSPINSTATUS.dwGuidLights [...]
 WFSPINCAPS.dwGuidLights [...]
*/

#define WFS_PIN_GUIDANCE_NOT_AVAILABLE (0x00000000)
#define WFS_PIN_GUIDANCE_OFF (0x00000001)
#define WFS_PIN_GUIDANCE_SLOW_FLASH (0x00000004)
#define WFS_PIN_GUIDANCE_MEDIUM_FLASH (0x00000008)
#define WFS_PIN_GUIDANCE_QUICK_FLASH (0x00000010)
#define WFS_PIN_GUIDANCE_CONTINUOUS (0x00000080)
#define WFS_PIN_GUIDANCE_RED (0x00000100)
#define WFS_PIN_GUIDANCE_GREEN (0x00000200)
#define WFS_PIN_GUIDANCE_YELLOW (0x00000400)
#define WFS_PIN_GUIDANCE_BLUE (0x00000800)
#define WFS_PIN_GUIDANCE_CYAN (0x00001000)
#define WFS_PIN_GUIDANCE_MAGENTA (0x00002000)
#define WFS_PIN_GUIDANCE_WHITE (0x00004000)
#define WFS_PIN_GUIDANCE_ENTRY (0x00100000)
#define WFS_PIN_GUIDANCE_EXIT (0x00200000)

/* values for WFSPINSTATUS.fwAutoBeepMode and
WFS_CMD_PIN_KEYPRESS_BEEP lpwMode parameter */

#define WFS_PIN_BEEP_ON_ACTIVE (0x0001)
#define WFS_PIN_BEEP_ON_INACTIVE (0x0002)

/* values of WFSPINSTATUS.wDevicePosition
 WFSPINDEVICEPOSITION.wPosition */

#define WFS_PIN_DEVICEINPOSITION (0)
#define WFS_PIN_DEVICENOTINPOSITION (1)
#define WFS_PIN_DEVICEPOSUNKNOWN (2)
#define WFS_PIN_DEVICEPOSNOTSUPP (3)

/* values of WFSPINCAPS.fwType */

#define WFS_PIN_TYPEEPP (0x0001)
#define WFS_PIN_TYPEEDM (0x0002)
#define WFS_PIN_TYPEHSM (0x0004)
#define WFS_PIN_TYPEETS (0x0008)

/* values of WFSPINCAPS.fwAlgorithms, WFSPINCRYPT.wAlgorithm */

#define WFS_PIN_CRYPTDESECB (0x0001)
#define WFS_PIN_CRYPTDESCBC (0x0002)
#define WFS_PIN_CRYPTDESCFB (0x0004)
#define WFS_PIN_CRYPTRSA (0x0008)
#define WFS_PIN_CRYPTECMA (0x0010)
#define WFS_PIN_CRYPTDESMAC (0x0020)
#define WFS_PIN_CRYPTTRIDESECB (0x0040)
#define WFS_PIN_CRYPTTRIDESCBC (0x0080)
#define WFS_PIN_CRYPTTRIDESCFB (0x0100)
#define WFS_PIN_CRYPTTRIDESMAC (0x0200)
#define WFS_PIN_CRYPTMAAMAC (0x0400)
#define WFS_PIN_CRYPTTRIDESMAC2805 (0x0800)
#define WFS_PIN_CRYPTSM4 (0x1000)
#define WFS_PIN_CRYPTSM4MAC (0x2000)

CWA 16926-6:2020 (E)

181

/* values of WFSPINCAPS.fwPinFormats */

#define WFS_PIN_FORM3624 (0x0001)
#define WFS_PIN_FORMANSI (0x0002)
#define WFS_PIN_FORMISO0 (0x0004)
#define WFS_PIN_FORMISO1 (0x0008)
#define WFS_PIN_FORMECI2 (0x0010)
#define WFS_PIN_FORMECI3 (0x0020)
#define WFS_PIN_FORMVISA (0x0040)
#define WFS_PIN_FORMDIEBOLD (0x0080)
#define WFS_PIN_FORMDIEBOLDCO (0x0100)
#define WFS_PIN_FORMVISA3 (0x0200)
#define WFS_PIN_FORMBANKSYS (0x0400)
#define WFS_PIN_FORMEMV (0x0800)
#define WFS_PIN_FORMISO3 (0x2000)
#define WFS_PIN_FORMAP (0x4000)
#define WFS_PIN_FORMISO4 (0x8000)

/* values of WFSPINCAPS.fwDerivationAlgorithms */

#define WFS_PIN_CHIP_ZKA (0x0001)

/* values of WFSPINCAPS.fwPresentationAlgorithms */

#define WFS_PIN_PRESENT_CLEAR (0x0001)

/* values of WFSPINCAPS.fwDisplay */

#define WFS_PIN_DISPNONE (1)
#define WFS_PIN_DISPLEDTHROUGH (2)
#define WFS_PIN_DISPDISPLAY (3)

/* values of WFSPINCAPS.fwIDKey */

#define WFS_PIN_IDKEYINITIALIZATION (0x0001)
#define WFS_PIN_IDKEYIMPORT (0x0002)

/* values of WFSPINCAPS.fwValidationAlgorithms */

#define WFS_PIN_DES (0x0001)
#define WFS_PIN_EUROCHEQUE (0x0002)
#define WFS_PIN_VISA (0x0004)
#define WFS_PIN_DES_OFFSET (0x0008)
#define WFS_PIN_BANKSYS (0x0010)

/* values of WFSPINCAPS.fwKeyCheckModes,
 WFSPINIMPORTKEYEX.wKeyCheckMode and WFSPINATTRIBUTES.dwCryptoMethod */

#define WFS_PIN_KCVNONE (0x0000)
#define WFS_PIN_KCVSELF (0x0001)
#define WFS_PIN_KCVZERO (0x0002)

/* Additional values for values of WFSPINSECUREKEYENTRY.wVerificationType */

#define WFS_PIN_KCV_DES (0x80000000)
#define WFS_PIN_KCV_3DES (0x40000000)
#define WFS_PIN_KCV_AES (0x20000000)

/* values of WFSPINCAPS.dwSymmetricKeyManagementMethods */

#define WFS_PIN_KM_FIXED_KEY (0x0001)
#define WFS_PIN_KM_MASTER_KEY (0x0002)
#define WFS_PIN_KM_TDES_DUKPT (0x0004)

/* values of WFSPINCAPS.fwAutoBeep */

#define WFS_PIN_BEEP_ACTIVE_AVAILABLE (0x0001)
#define WFS_PIN_BEEP_ACTIVE_SELECTABLE (0x0002)
#define WFS_PIN_BEEP_INACTIVE_AVAILABLE (0x0004)

CWA 16926-6:2015 (E)

182

#define WFS_PIN_BEEP_INACTIVE_SELECTABLE (0x0008)

/* values of WFSPINCAPS.fwKeyBlockImportFormats */

#define WFS_PIN_ANSTR31KEYBLOCK (0x0001)
#define WFS_PIN_ANSTR31KEYBLOCKB (0x0002)
#define WFS_PIN_ANSTR31KEYBLOCKC (0x0004)

/* values of WFSPINETSCAPS.wFloatFlags and WFSPINFRAME.wFloatAction */

#define WFS_PIN_FLOAT_NONE (0x0000)
#define WFS_PIN_FLOATX (0x0001)
#define WFS_PIN_FLOATY (0x0002)

/* values of WFSPINKEYDETAIL.fwUse and values of WFSPINKEYDETAILEX.dwUse */

#define WFS_PIN_USECRYPT (0x0001)
#define WFS_PIN_USEFUNCTION (0x0002)
#define WFS_PIN_USEMACING (0x0004)
#define WFS_PIN_USEKEYENCKEY (0x0020)
#define WFS_PIN_USENODUPLICATE (0x0040)
#define WFS_PIN_USESVENCKEY (0x0080)
#define WFS_PIN_USECONSTRUCT (0x0100)
#define WFS_PIN_USESECURECONSTRUCT (0x0200)
#define WFS_PIN_USEANSTR31MASTER (0x0400)
#define WFS_PIN_USERESTRICTEDKEYENCKEY (0x0800)
#define WFS_PIN_USEKEYDERKEY (0x1000)

/* additional values for WFSPINKEYDETAILEX.dwUse */

#define WFS_PIN_USEPINLOCAL (0x00010000)
#define WFS_PIN_USERSAPUBLIC (0x00020000)
#define WFS_PIN_USERSAPRIVATE (0x00040000)
#define WFS_PIN_USECHIPINFO (0x00100000)
#define WFS_PIN_USECHIPPIN (0x00200000)
#define WFS_PIN_USECHIPPS (0x00400000)
#define WFS_PIN_USECHIPMAC (0x00800000)
#define WFS_PIN_USECHIPLT (0x01000000)
#define WFS_PIN_USECHIPMACLZ (0x02000000)
#define WFS_PIN_USECHIPMACAZ (0x04000000)
#define WFS_PIN_USERSAPUBLICVERIFY (0x08000000)
#define WFS_PIN_USERSAPRIVATESIGN (0x10000000)
#define WFS_PIN_USEPINREMOTE (0x20000000)

/* values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS_PIN_FK_0 (0x00000001)
#define WFS_PIN_FK_1 (0x00000002)
#define WFS_PIN_FK_2 (0x00000004)
#define WFS_PIN_FK_3 (0x00000008)
#define WFS_PIN_FK_4 (0x00000010)
#define WFS_PIN_FK_5 (0x00000020)
#define WFS_PIN_FK_6 (0x00000040)
#define WFS_PIN_FK_7 (0x00000080)
#define WFS_PIN_FK_8 (0x00000100)
#define WFS_PIN_FK_9 (0x00000200)
#define WFS_PIN_FK_ENTER (0x00000400)
#define WFS_PIN_FK_CANCEL (0x00000800)
#define WFS_PIN_FK_CLEAR (0x00001000)
#define WFS_PIN_FK_BACKSPACE (0x00002000)
#define WFS_PIN_FK_HELP (0x00004000)
#define WFS_PIN_FK_DECPOINT (0x00008000)
#define WFS_PIN_FK_00 (0x00010000)
#define WFS_PIN_FK_000 (0x00020000)
#define WFS_PIN_FK_RES1 (0x00040000)
#define WFS_PIN_FK_RES2 (0x00080000)
#define WFS_PIN_FK_RES3 (0x00100000)
#define WFS_PIN_FK_RES4 (0x00200000)
#define WFS_PIN_FK_RES5 (0x00400000)
#define WFS_PIN_FK_RES6 (0x00800000)

CWA 16926-6:2020 (E)

183

#define WFS_PIN_FK_RES7 (0x01000000)
#define WFS_PIN_FK_RES8 (0x02000000)
#define WFS_PIN_FK_OEM1 (0x04000000)
#define WFS_PIN_FK_OEM2 (0x08000000)
#define WFS_PIN_FK_OEM3 (0x10000000)
#define WFS_PIN_FK_OEM4 (0x20000000)
#define WFS_PIN_FK_OEM5 (0x40000000)
#define WFS_PIN_FK_OEM6 (0x80000000)

/* additional values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS_PIN_FK_UNUSED (0x00000000)

#define WFS_PIN_FK_A WFS_PIN_FK_RES1
#define WFS_PIN_FK_B WFS_PIN_FK_RES2
#define WFS_PIN_FK_C WFS_PIN_FK_RES3
#define WFS_PIN_FK_D WFS_PIN_FK_RES4
#define WFS_PIN_FK_E WFS_PIN_FK_RES5
#define WFS_PIN_FK_F WFS_PIN_FK_RES6
#define WFS_PIN_FK_SHIFT WFS_PIN_FK_RES7

/* values of WFSPINFDK.ulFDK */

#define WFS_PIN_FK_FDK01 (0x00000001)
#define WFS_PIN_FK_FDK02 (0x00000002)
#define WFS_PIN_FK_FDK03 (0x00000004)
#define WFS_PIN_FK_FDK04 (0x00000008)
#define WFS_PIN_FK_FDK05 (0x00000010)
#define WFS_PIN_FK_FDK06 (0x00000020)
#define WFS_PIN_FK_FDK07 (0x00000040)
#define WFS_PIN_FK_FDK08 (0x00000080)
#define WFS_PIN_FK_FDK09 (0x00000100)
#define WFS_PIN_FK_FDK10 (0x00000200)
#define WFS_PIN_FK_FDK11 (0x00000400)
#define WFS_PIN_FK_FDK12 (0x00000800)
#define WFS_PIN_FK_FDK13 (0x00001000)
#define WFS_PIN_FK_FDK14 (0x00002000)
#define WFS_PIN_FK_FDK15 (0x00004000)
#define WFS_PIN_FK_FDK16 (0x00008000)
#define WFS_PIN_FK_FDK17 (0x00010000)
#define WFS_PIN_FK_FDK18 (0x00020000)
#define WFS_PIN_FK_FDK19 (0x00040000)
#define WFS_PIN_FK_FDK20 (0x00080000)
#define WFS_PIN_FK_FDK21 (0x00100000)
#define WFS_PIN_FK_FDK22 (0x00200000)
#define WFS_PIN_FK_FDK23 (0x00400000)
#define WFS_PIN_FK_FDK24 (0x00800000)
#define WFS_PIN_FK_FDK25 (0x01000000)
#define WFS_PIN_FK_FDK26 (0x02000000)
#define WFS_PIN_FK_FDK27 (0x04000000)
#define WFS_PIN_FK_FDK28 (0x08000000)
#define WFS_PIN_FK_FDK29 (0x10000000)
#define WFS_PIN_FK_FDK30 (0x20000000)
#define WFS_PIN_FK_FDK31 (0x40000000)
#define WFS_PIN_FK_FDK32 (0x80000000)

/* values of WFSPINCRYPT.wMode */

#define WFS_PIN_MODEENCRYPT (1)
#define WFS_PIN_MODEDECRYPT (2)
#define WFS_PIN_MODERANDOM (3)

/* values of WFSPINENTRY.wCompletion */

#define WFS_PIN_COMPAUTO (0)
#define WFS_PIN_COMPENTER (1)
#define WFS_PIN_COMPCANCEL (2)
#define WFS_PIN_COMPCONTINUE (6)
#define WFS_PIN_COMPCLEAR (7)
#define WFS_PIN_COMPBACKSPACE (8)

CWA 16926-6:2015 (E)

184

#define WFS_PIN_COMPFDK (9)
#define WFS_PIN_COMPHELP (10)
#define WFS_PIN_COMPFK (11)
#define WFS_PIN_COMPCONTFDK (12)

/* values of WFSPINSECMSG.wProtocol */

#define WFS_PIN_PROTISOAS (1)
#define WFS_PIN_PROTISOLZ (2)
#define WFS_PIN_PROTISOPS (3)
#define WFS_PIN_PROTCHIPZKA (4)
#define WFS_PIN_PROTRAWDATA (5)
#define WFS_PIN_PROTPBM (6)
#define WFS_PIN_PROTHSMLDI (7)
#define WFS_PIN_PROTGENAS (8)
#define WFS_PIN_PROTCHIPINCHG (9)
#define WFS_PIN_PROTPINCMP (10)
#define WFS_PIN_PROTISOPINCHG (11)

/* values of WFSPINHSMINIT.wInitMode. */

#define WFS_PIN_INITTEMP (1)
#define WFS_PIN_INITDEFINITE (2)
#define WFS_PIN_INITIRREVERSIBLE (3)

/* values of WFSPINENCIO.wProtocol and WFSPINCAPS.fwENCIOProtocols */

#define WFS_PIN_ENC_PROT_CH (0x0001)
#define WFS_PIN_ENC_PROT_GIECB (0x0002)
#define WFS_PIN_ENC_PROT_LUX (0x0004)
#define WFS_PIN_ENC_PROT_CHN (0x0008)

/* values for WFS_SRVE_PIN_CERTIFICATE_CHANGE and WFSPINSTATUS.dwCertificateState */

#define WFS_PIN_CERT_SECONDARY (0x00000002)

/* values for WFSPINSTATUS.dwCertificateState*/

#define WFS_PIN_CERT_UNKNOWN (0x00000000)
#define WFS_PIN_CERT_PRIMARY (0x00000001)
#define WFS_PIN_CERT_NOTREADY (0x00000004)

/* Values for WFSPINCAPS.dwRSAAuthenticationScheme,
WFSPINCAPS.dwRestrictedKeyEncKeySupport (LOWORD only) and the fast-track Capabilities
lpszExtra parameter, REMOTE_KEY_SCHEME. */

#define WFS_PIN_RSA_AUTH_2PARTY_SIG (0x00000001)
#define WFS_PIN_RSA_AUTH_3PARTY_CERT (0x00000002)
#define WFS_PIN_RSA_AUTH_3PARTY_CERT_TR34 (0x00000004)

/* Values for WFSPINCAPS.dwRestrictedKeyEncKeySupport (HIWORD only) */
#define WFS_PIN_RESTRICTED_SECUREKEYENTRY (0x00010000)

/* Values for WFSPINCAPS.dwSignatureScheme and the fast-track Capabilities lpzExtra
parameter, SIGNATURE_CAPABILITIES. */

#define WFS_PIN_SIG_GEN_RSA_KEY_PAIR (0x00000001)
#define WFS_PIN_SIG_RANDOM_NUMBER (0x00000002)
#define WFS_PIN_SIG_EXPORT_EPP_ID (0x00000004)
#define WFS_PIN_SIG_ENHANCED_RKL (0x00000008)

/* values of WFSPINIMPORTRSAPUBLICKEY.dwRSASignatureAlgorithm,
WFSPINCAPS.dwRSASignatureAlgorithm and WFSPINATTRIBUTES.dwCryptoMethod */

#define WFS_PIN_SIGN_NA (0)
#define WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 (0x00000001)
#define WFS_PIN_SIGN_RSASSA_PSS (0x00000002)

/* values of WFSPINIMPORTRSAPUBLICKEYOUTPUT.dwRSAKeyCheckMode */

CWA 16926-6:2020 (E)

185

#define WFS_PIN_RSA_KCV_NONE (0x00000000)
#define WFS_PIN_RSA_KCV_SHA1 (0x00000001)
#define WFS_PIN_RSA_KCV_SHA256 (0x00000002)

/* values of WFSPINEXPORTRSAISSUERSIGNEDITEM.wExportItemType and */
/* WFSPINEXPORTRSAEPPSIGNEDITEM.wExportItemType */

#define WFS_PIN_EXPORT_EPP_ID (0x0001)
#define WFS_PIN_EXPORT_PUBLIC_KEY (0x0002)

/* values of WFSPINIMPORTRSASIGNEDDESKEY.dwRSAEncipherAlgorithm,
WFSPINCAPS.dwRSACryptAlgorithm and WFSPINATTRIBUTES.dwCryptoMethod */

#define WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 (0x00000001)
#define WFS_PIN_CRYPT_RSAES_OAEP (0x00000002)

/* values of WFSPINGENERATERSAKEYPAIR.wExponentValue */

#define WFS_PIN_DEFAULT (0)
#define WFS_PIN_EXPONENT_1 (1)
#define WFS_PIN_EXPONENT_4 (2)
#define WFS_PIN_EXPONENT_16 (3)

/* values of WFSPINCAPS.wDESKeyLength, */
/* WFSPINIMPORTRSASIGNEDDESKEYOUTPUT.wKeyLength and */
/* WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT.wKeyLength */

#define WFS_PIN_KEYSINGLE (0x0001)
#define WFS_PIN_KEYDOUBLE (0x0002)
#define WFS_PIN_KEYTRIPLE (0x0004)

/* values of WFSPINGETCERTIFICATE.wGetCertificate and
WFSPINCAPS.wCertificateTypes */

#define WFS_PIN_PUBLICENCKEY (0x0001)
#define WFS_PIN_PUBLICVERIFICATIONKEY (0x0002)
#define WFS_PIN_PUBLICHOSTKEY (0x0004)

/* values of WFSPINAUTHENTICATE.dwSigner, */
/* WFSPINLOADCERTIFICATEEX.dwSigner, and */
/* WFSPINSIGNERCAP.dwSigner */

#define WFS_PIN_SIGNER_NONE (0x00000001)
#define WFS_PIN_SIGNER_CERTHOST (0x00000002)
#define WFS_PIN_SIGNER_SIGHOST (0x00000004)
#define WFS_PIN_SIGNER_CA (0x00000008)
#define WFS_PIN_SIGNER_HL (0x00000010)
#define WFS_PIN_SIGNER_CBCMAC (0x00000020)
#define WFS_PIN_SIGNER_CMAC (0x00000040)
#define WFS_PIN_SIGNER_TR34 (0x10000000)
#define WFS_PIN_SIGNER_RESERVED_1 (0x20000000)
#define WFS_PIN_SIGNER_RESERVED_2 (0x40000000)
#define WFS_PIN_SIGNER_RESERVED_3 (0x80000000)

/* values of WFSPINLOADCERTIFICATEEX.dwLoadOption and */
/* WFSPINSIGNERCAP.dwOption */

#define WFS_PIN_LOAD_NEWHOST (0x00000001)
#define WFS_PIN_LOAD_REPLACEHOST (0x00000002)

/* values of WFSPINIMPORTRSAENCIPHEREDPKCS7EX.dwCRKLLoadOption */

#define WFS_PIN_CRKLLOAD_NORANDOM (0x00000001)
#define WFS_PIN_CRKLLOAD_NORANDOM_CRL (0x00000002)
#define WFS_PIN_CRKLLOAD_RANDOM (0x00000004)
#define WFS_PIN_CRKLLOAD_RANDOM_CRL (0x00000008)

/* values for WFSPINEMVIMPORTPUBLICKEY.wImportScheme and
WFSPINCAPS.lpwEMVImportSchemes */

CWA 16926-6:2015 (E)

186

#define WFS_PIN_EMV_IMPORT_PLAIN_CA (1)
#define WFS_PIN_EMV_IMPORT_CHKSUM_CA (2)
#define WFS_PIN_EMV_IMPORT_EPI_CA (3)
#define WFS_PIN_EMV_IMPORT_ISSUER (4)
#define WFS_PIN_EMV_IMPORT_ICC (5)
#define WFS_PIN_EMV_IMPORT_ICC_PIN (6)
#define WFS_PIN_EMV_IMPORT_PKCSV1_5_CA (7)

/* values for WFSPINDIGEST.wHashAlgorithm and WFSPINCAPS.fwEMVHashAlgorithm */

#define WFS_PIN_HASH_SHA1_DIGEST (0x0001)
#define WFS_PIN_HASH_SHA256_DIGEST (0x0002)

/* values of WFSPINSECUREKEYDETAIL.fwKeyEntryMode */

#define WFS_PIN_SECUREKEY_NOTSUPP (0x0000)
#define WFS_PIN_SECUREKEY_REG_SHIFT (0x0001)
#define WFS_PIN_SECUREKEY_REG_UNIQUE (0x0002)
#define WFS_PIN_SECUREKEY_IRREG_SHIFT (0x0004)
#define WFS_PIN_SECUREKEY_IRREG_UNIQUE (0x0008)

/* values of WFSPINSTATUS.wAntiFraudModule */

#define WFS_PIN_AFMNOTSUPP (0)
#define WFS_PIN_AFMOK (1)
#define WFS_PIN_AFMINOP (2)
#define WFS_PIN_AFMDEVICEDETECTED (3)
#define WFS_PIN_AFMUNKNOWN (4)

/* values of WFSPINLAYOT.dwEntryMode and WFSPINGETLAYOUT.dwEntryMode */

#define WFS_PIN_LAYOUT_DATA (0x00000001)
#define WFS_PIN_LAYOUT_PIN (0x00000002)
#define WFS_PIN_LAYOUT_SECURE (0x00000004)

/* values of WFSPINFK.wKeyType */

#define WFS_PIN_FK (0x0001)
#define WFS_PIN_FDK (0x0002)

/* values of WFSPINATTRIBUTES.dwCryptoMethod */

#define WFS_PIN_CRYPTOECB (1)
#define WFS_PIN_CRYPTOCBC (2)
#define WFS_PIN_CRYPTOCFB (3)
#define WFS_PIN_CRYPTOOFB (4)
#define WFS_PIN_CRYPTOCTR (5)
#define WFS_PIN_CRYPTOXTS (6)

/* values of WFSPINATTRIBUTES.dwCryptoMethod Hash Algorithms */

#define WFS_PIN_SIGNHASH_SHA1 (0x80000000)
#define WFS_PIN_SIGNHASH_SHA256 (0x40000000)

/* values of WFSPINKEYDETAIL340.fwLoaded */

#define WFS_PIN_LOADED_NO (0x00000001)
#define WFS_PIN_LOADED_YES (0x00000002)
#define WFS_PIN_LOADED_UNKNOWN (0x00000004)
#define WFS_PIN_LOADED_CONSTRUCT (0x80000000)

/* XFS PIN Errors */

#define WFS_ERR_PIN_KEYNOTFOUND (-(PIN_SERVICE_OFFSET + 0))
#define WFS_ERR_PIN_MODENOTSUPPORTED (-(PIN_SERVICE_OFFSET + 1))
#define WFS_ERR_PIN_ACCESSDENIED (-(PIN_SERVICE_OFFSET + 2))
#define WFS_ERR_PIN_INVALIDID (-(PIN_SERVICE_OFFSET + 3))
#define WFS_ERR_PIN_DUPLICATEKEY (-(PIN_SERVICE_OFFSET + 4))
#define WFS_ERR_PIN_KEYNOVALUE (-(PIN_SERVICE_OFFSET + 6))

CWA 16926-6:2020 (E)

187

#define WFS_ERR_PIN_USEVIOLATION (-(PIN_SERVICE_OFFSET + 7))
#define WFS_ERR_PIN_NOPIN (-(PIN_SERVICE_OFFSET + 8))
#define WFS_ERR_PIN_INVALIDKEYLENGTH (-(PIN_SERVICE_OFFSET + 9))
#define WFS_ERR_PIN_KEYINVALID (-(PIN_SERVICE_OFFSET + 10))
#define WFS_ERR_PIN_KEYNOTSUPPORTED (-(PIN_SERVICE_OFFSET + 11))
#define WFS_ERR_PIN_NOACTIVEKEYS (-(PIN_SERVICE_OFFSET + 12))
#define WFS_ERR_PIN_NOTERMINATEKEYS (-(PIN_SERVICE_OFFSET + 14))
#define WFS_ERR_PIN_MINIMUMLENGTH (-(PIN_SERVICE_OFFSET + 15))
#define WFS_ERR_PIN_PROTOCOLNOTSUPP (-(PIN_SERVICE_OFFSET + 16))
#define WFS_ERR_PIN_INVALIDDATA (-(PIN_SERVICE_OFFSET + 17))
#define WFS_ERR_PIN_NOTALLOWED (-(PIN_SERVICE_OFFSET + 18))
#define WFS_ERR_PIN_NOKEYRAM (-(PIN_SERVICE_OFFSET + 19))
#define WFS_ERR_PIN_NOCHIPTRANSACTIVE (-(PIN_SERVICE_OFFSET + 20))
#define WFS_ERR_PIN_ALGORITHMNOTSUPP (-(PIN_SERVICE_OFFSET + 21))
#define WFS_ERR_PIN_FORMATNOTSUPP (-(PIN_SERVICE_OFFSET + 22))
#define WFS_ERR_PIN_HSMSTATEINVALID (-(PIN_SERVICE_OFFSET + 23))
#define WFS_ERR_PIN_MACINVALID (-(PIN_SERVICE_OFFSET + 24))
#define WFS_ERR_PIN_PROTINVALID (-(PIN_SERVICE_OFFSET + 25))
#define WFS_ERR_PIN_FORMATINVALID (-(PIN_SERVICE_OFFSET + 26))
#define WFS_ERR_PIN_CONTENTINVALID (-(PIN_SERVICE_OFFSET + 27))
#define WFS_ERR_PIN_SIG_NOT_SUPP (-(PIN_SERVICE_OFFSET + 29))
#define WFS_ERR_PIN_INVALID_MOD_LEN (-(PIN_SERVICE_OFFSET + 31))
#define WFS_ERR_PIN_INVALIDCERTSTATE (-(PIN_SERVICE_OFFSET + 32))
#define WFS_ERR_PIN_KEY_GENERATION_ERROR (-(PIN_SERVICE_OFFSET + 33))
#define WFS_ERR_PIN_EMV_VERIFY_FAILED (-(PIN_SERVICE_OFFSET + 34))
#define WFS_ERR_PIN_RANDOMINVALID (-(PIN_SERVICE_OFFSET + 35))
#define WFS_ERR_PIN_SIGNATUREINVALID (-(PIN_SERVICE_OFFSET + 36))
#define WFS_ERR_PIN_SNSCDINVALID (-(PIN_SERVICE_OFFSET + 37))
#define WFS_ERR_PIN_NORSAKEYPAIR (-(PIN_SERVICE_OFFSET + 38))
#define WFS_ERR_PIN_INVALID_PORT (-(PIN_SERVICE_OFFSET + 39))
#define WFS_ERR_PIN_POWERSAVETOOSHORT (-(PIN_SERVICE_OFFSET + 40))
#define WFS_ERR_PIN_INVALIDHSM (-(PIN_SERVICE_OFFSET + 41))
#define WFS_ERR_PIN_TOOMANYFRAMES (-(PIN_SERVICE_OFFSET + 42))
#define WFS_ERR_PIN_PARTIALFRAME (-(PIN_SERVICE_OFFSET + 43))
#define WFS_ERR_PIN_MISSINGKEYS (-(PIN_SERVICE_OFFSET + 44))
#define WFS_ERR_PIN_FRAMECOORD (-(PIN_SERVICE_OFFSET + 45))
#define WFS_ERR_PIN_KEYCOORD (-(PIN_SERVICE_OFFSET + 46))
#define WFS_ERR_PIN_FRAMEOVERLAP (-(PIN_SERVICE_OFFSET + 47))
#define WFS_ERR_PIN_KEYOVERLAP (-(PIN_SERVICE_OFFSET + 48))
#define WFS_ERR_PIN_TOOMANYKEYS (-(PIN_SERVICE_OFFSET + 49))
#define WFS_ERR_PIN_KEYALREADYDEFINED (-(PIN_SERVICE_OFFSET + 50))
#define WFS_ERR_PIN_COMMANDUNSUPP (-(PIN_SERVICE_OFFSET + 51))
#define WFS_ERR_PIN_SYNCHRONIZEUNSUPP (-(PIN_SERVICE_OFFSET + 52))
#define WFS_ERR_PIN_DUKPTOVERFLOW (-(PIN_SERVICE_OFFSET + 53))
#define WFS_ERR_PIN_ENTRYTIMEOUT (-(PIN_SERVICE_OFFSET + 54))
#define WFS_ERR_PIN_CRYPTOMETHODNOTSUPP (-(PIN_SERVICE_OFFSET + 55))

/*===*/
/* PIN Info Command Structures and variables */
/*===*/

typedef struct _wfs_hex_data
{
 USHORT usLength;
 LPBYTE lpbData;
} WFSXDATA, *LPWFSXDATA;

typedef struct _wfs_pin_status
{
 WORD fwDevice;
 WORD fwEncStat;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_PIN_GUIDLIGHTS_SIZE];
 WORD fwAutoBeepMode;
 DWORD dwCertificateState;
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wAntiFraudModule;
} WFSPINSTATUS, *LPWFSPINSTATUS;

CWA 16926-6:2015 (E)

188

typedef struct _wfs_pin_rest_keyenckey
{
 DWORD dwLoadingMethod;
 DWORD dwUses;
} WFSPINRESTKEYENCKEY, *LPWFSPINRESTKEYENCKEY;

typedef struct _wfs_pin_signer_capability
{
 DWORD dwSigner;
 DWORD dwOption;
} WFSPINSIGNERCAP, *LPWFSPINSIGNERCAP;

typedef struct _wfs_pin_ets_caps
{
 LONG lXPos;
 LONG lYPos;
 USHORT usXSize;
 USHORT usYSize;
 WORD wMaximumTouchFrames;
 WORD wMaximumTouchKeys;
 WORD wFloatFlags;
} WFSPINETSCAPS, *LPWFSPINETSCAPS;

typedef struct _wfs_pin_attributes
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 DWORD dwCryptoMethod;
} WFSPINATTRIBUTES, *LPWFSPINATTRIBUTES;

typedef struct _wfs_pin_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usKeyNum;
 WORD fwAlgorithms;
 WORD fwPinFormats;
 WORD fwDerivationAlgorithms;
 WORD fwPresentationAlgorithms;
 WORD fwDisplay;
 BOOL bIDConnect;
 WORD fwIDKey;
 WORD fwValidationAlgorithms;
 WORD fwKeyCheckModes;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_PIN_GUIDLIGHTS_SIZE];
 BOOL bPINCanPersistAfterUse;
 WORD fwAutoBeep;
 LPSTR lpsHSMVendor;
 BOOL bHSMJournaling;
 DWORD dwRSAAuthenticationScheme;
 DWORD dwRSASignatureAlgorithm;
 DWORD dwRSACryptAlgorithm;
 DWORD dwRSAKeyCheckMode;
 DWORD dwSignatureScheme;
 LPWORD lpwEMVImportSchemes;
 WORD fwEMVHashAlgorithm;
 BOOL bKeyImportThroughParts;
 WORD fwENCIOProtocols;
 BOOL bTypeCombined;
 BOOL bSetPinblockDataRequired;
 WORD fwKeyBlockImportFormats;
 BOOL bPowerSaveControl;
 BOOL bAntiFraudModule;
 WORD wDESKeyLength;
 WORD wCertificateTypes;
 LPWFSPINSIGNERCAP *lppLoadCertOptions;
 DWORD dwCRKLLoadOptions;

CWA 16926-6:2020 (E)

189

 LPWFSPINETSCAPS lpETSCaps;
 LPDWORD lpdwSynchronizableCommands;
 LPWFSPINRESTKEYENCKEY *lppRestrictedKeyEncKeySupport;
 DWORD dwSymmetricKeyManagementMethods;
 LPWFSPINATTRIBUTES *lppCryptAttributes;
 LPWFSPINATTRIBUTES *lppPINBlockAttributes;
 LPWFSPINATTRIBUTES *lppKeyAttributes;
 LPWFSPINATTRIBUTES *lppDecryptAttributes;
 LPWFSPINATTRIBUTES *lppVerifyAttributes;

} WFSPINCAPS, *LPWFSPINCAPS;

typedef struct _wfs_pin_key_detail
{
 LPSTR lpsKeyName;
 WORD fwUse;
 BOOL bLoaded;
 LPWFSXDATA lpxKeyBlockHeader;
} WFSPINKEYDETAIL, *LPWFSPINKEYDETAIL;

typedef struct _wfs_pin_fdk
{
 ULONG ulFDK;
 USHORT usXPosition;
 USHORT usYPosition;
} WFSPINFDK, *LPWFSPINFDK;

typedef struct _wfs_pin_func_key_detail
{
 ULONG ulFuncMask;
 USHORT usNumberFDKs;
 LPWFSPINFDK *lppFDKs;
} WFSPINFUNCKEYDETAIL, *LPWFSPINFUNCKEYDETAIL;

typedef struct _wfs_pin_key_detail_ex
{
 LPSTR lpsKeyName;
 DWORD dwUse;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 BOOL bLoaded;
 LPWFSXDATA lpxKeyBlockHeader;
} WFSPINKEYDETAILEX, *LPWFSPINKEYDETAILEX;

/* WFS_INF_PIN_SECUREKEY_DETAIL command key layout output structure */
typedef struct _wfs_pin_hex_keys
{
 USHORT usXPos;
 USHORT usYPos;
 USHORT usXSize;
 USHORT usYSize;
 ULONG ulFK;
 ULONG ulShiftFK;
} WFSPINHEXKEYS, *LPWFSPINHEXKEYS;

/* WFS_INF_PIN_SECUREKEY_DETAIL command output structure */
typedef struct _wfs_pin_secure_key_detail
{
 WORD fwKeyEntryMode;
 LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;
 ULONG ulClearFDK;
 ULONG ulCancelFDK;
 ULONG ulBackspaceFDK;
 ULONG ulEnterFDK;
 WORD wColumns;
 WORD wRows;
 LPWFSPINHEXKEYS *lppHexKeys;
} WFSPINSECUREKEYDETAIL, *LPWFSPINSECUREKEYDETAIL;

CWA 16926-6:2015 (E)

190

/* WFS_INF_PIN_PCIPTS_DEVICE_ID command output structure */
typedef struct _wfs_pin_pcipts_deviceid
{
 LPSTR lpszManufacturerIdentifier;
 LPSTR lpszModelIdentifier;
 LPSTR lpszHardwareIdentifier;
 LPSTR lpszFirmwareIdentifier;
 LPSTR lpszApplicationIdentifier;
} WFSPINPCIPTSDEVICEID, *LPWFSPINPCIPTSDEVICEID;

/* WFSPINKEYBLOCKINFO structure */
typedef struct _wfs_pin_key_block_info
{
 BYTE bKeyUsage[2];
 BYTE bAlgorithm;
 BYTE bModeOfUse;
 BYTE bKeyVersionNumber[2];
 BYTE bExportability;
 LPWFSXDATA lpxOptionalBlockHeader;
 ULONG ulKeyLength;
} WFSPINKEYBLOCKINFO, *LPWFSPINKEYBLOCKINFO;

/* WFS_INF_PIN_KEY_DETAIL_340 command output structure */
typedef struct _wfs_pin_key_detail_340
{
 LPSTR lpsKeyName;
 DWORD dwUse;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 DWORD fwLoaded;
 LPWFSPINKEYBLOCKINFO lpKeyBlockInfo;
} WFSPINKEYDETAIL340, *LPWFSPINKEYDETAIL340;

/*===*/
/* PIN Execute Command Structures */
/*===*/

typedef struct _wfs_pin_crypt
{
 WORD wMode;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 WORD wAlgorithm;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, *LPWFSPINCRYPT;

typedef struct _wfs_pin_import
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxValue;
 WORD fwUse;
} WFSPINIMPORT, *LPWFSPINIMPORT;

typedef struct _wfs_pin_derive
{
 WORD wDerivationAlgorithm;
 LPSTR lpsKey;
 LPSTR lpsKeyGenKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;

CWA 16926-6:2020 (E)

191

 LPWFSXDATA lpxInputData;
 LPWFSXDATA lpxIdent;
} WFSPINDERIVE, *LPWFSPINDERIVE;

typedef struct _wfs_pin_getpin
{
 USHORT usMinLen;
 USHORT usMaxLen;
 BOOL bAutoEnd;
 CHAR cEcho;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETPIN, *LPWFSPINGETPIN;

typedef struct _wfs_pin_entry
{
 USHORT usDigits;
 WORD wCompletion;
} WFSPINENTRY, *LPWFSPINENTRY;

typedef struct _wfs_pin_local_des
{
 LPSTR lpsValidationData;
 LPSTR lpsOffset;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 BOOL bNoLeadingZero;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALDES, *LPWFSPINLOCALDES;

typedef struct _wfs_pin_create_offset
{
 LPSTR lpsValidationData;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINCREATEOFFSET, *LPWFSPINCREATEOFFSET;

typedef struct _wfs_pin_local_eurocheque
{
 LPSTR lpsEurochequeData;
 LPSTR lpsPVV;
 WORD wFirstEncDigits;
 WORD wFirstEncOffset;
 WORD wPVVDigits;
 WORD wPVVOffset;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, *LPWFSPINLOCALEUROCHEQUE;

typedef struct _wfs_pin_local_visa
{
 LPSTR lpsPAN;
 LPSTR lpsPVV;
 WORD wPVVDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
} WFSPINLOCALVISA, *LPWFSPINLOCALVISA;

typedef struct _wfs_pin_presentidc
{

CWA 16926-6:2015 (E)

192

 WORD wPresentAlgorithm;
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 LPVOID lpAlgorithmData;
} WFSPINPRESENTIDC, *LPWFSPINPRESENTIDC;

typedef struct _wfs_pin_present_result
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSPINPRESENTRESULT, *LPWFSPINPRESENTRESULT;

typedef struct _wfs_pin_presentclear
{
 ULONG ulPINPointer;
 USHORT usPINOffset;
} WFSPINPRESENTCLEAR, *LPWFSPINPRESENTCLEAR;

typedef struct _wfs_pin_block
{
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 WORD wFormat;
 LPSTR lpsKey;
 LPSTR lpsKeyEncKey;
} WFSPINBLOCK, *LPWFSPINBLOCK;

typedef struct _wfs_pin_block_ex
{
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 DWORD dwFormat;
 LPSTR lpsKey;
 LPSTR lpsKeyEncKey;
 DWORD dwAlgorithm;
} WFSPINBLOCKEX, *LPWFSPINBLOCKEX;

typedef struct _wfs_pin_getdata
{
 USHORT usMaxLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETDATA, *LPWFSPINGETDATA;

typedef struct _wfs_pin_key
{
 WORD wCompletion;
 ULONG ulDigit;
} WFSPINKEY, *LPWFSPINKEY;

typedef struct _wfs_pin_data
{
 USHORT usKeys;
 LPWFSPINKEY *lpPinKeys;
 WORD wCompletion;
} WFSPINDATA, *LPWFSPINDATA;

typedef struct _wfs_pin_init
{
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxKey;
} WFSPININIT, *LPWFSPININIT;

CWA 16926-6:2020 (E)

193

typedef struct _wfs_pin_local_banksys
{
 LPWFSXDATA lpxATMVAC;
} WFSPINLOCALBANKSYS, *LPWFSPINLOCALBANKSYS;

typedef struct _wfs_pin_banksys_io
{
 ULONG ulLength;
 LPBYTE lpbData;
} WFSPINBANKSYSIO, *LPWFSPINBANKSYSIO;

typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
} WFSPINSECMSG, *LPWFSPINSECMSG;

typedef struct _wfs_pin_import_key_ex
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxControlVector;
 DWORD dwUse;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTKEYEX, *LPWFSPINIMPORTKEYEX;

typedef struct _wfs_pin_enc_io
{
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

/* WFS_CMD_PIN_SECUREKEY_ENTRY command input structure */
typedef struct _wfs_pin_secure_key_entry
{
 USHORT usKeyLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
 WORD wVerificationType;
} WFSPINSECUREKEYENTRY, *LPWFSPINSECUREKEYENTRY;

/* WFS_CMD_PIN_SECUREKEY_ENTRY command output structure */
typedef struct _wfs_pin_secure_key_entry_out
{
 USHORT usDigits;
 WORD wCompletion;
 LPWFSXDATA lpxKCV;
} WFSPINSECUREKEYENTRYOUT, *LPWFSPINSECUREKEYENTRYOUT;

/* WFS_CDM_PIN_IMPORT_KEYBLOCK command input structure */
typedef struct _wfs_pin_import_key_block
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxKeyBlock;
} WFSPINIMPORTKEYBLOCK, *LPWFSPINIMPORTKEYBLOCK;

typedef struct _wfs_pin_import_rsa_public_key
{
 LPSTR lpsKey;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;

CWA 16926-6:2015 (E)

194

 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSAPUBLICKEY, *LPWFSPINIMPORTRSAPUBLICKEY;

typedef struct _wfs_pin_import_rsa_public_key_output
{
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAPUBLICKEYOUTPUT, *LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

typedef struct _wfs_pin_export_rsa_issuer_signed_item
{
 WORD wExportItemType;
 LPSTR lpsName;
} WFSPINEXPORTRSAISSUERSIGNEDITEM, *LPWFSPINEXPORTRSAISSUERSIGNEDITEM;

typedef struct _wfs_pin_export_rsa_issuer_signed_item_output
{
 LPWFSXDATA lpxValue;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT, *LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

typedef struct _wfs_pin_import_rsa_signed_des_key
{
 LPSTR lpsKey;
 LPSTR lpsDecryptKey;
 DWORD dwRSAEncipherAlgorithm;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSASIGNEDDESKEY, *LPWFSPINIMPORTRSASIGNEDDESKEY;

typedef struct _wfs_pin_import_rsa_signed_des_key_output
{
 WORD wKeyLength;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSASIGNEDDESKEYOUTPUT, *LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

typedef struct _wfs_pin_generate_rsa_key
{
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wModulusLength;
 WORD wExponentValue;
} WFSPINGENERATERSAKEYPAIR, *LPWFSPINGENERATERSAKEYPAIR;

typedef struct _wfs_pin_export_rsa_epp_signed_item
{
 WORD wExportItemType;
 LPSTR lpsName;
 LPSTR lpsSigKey;
 DWORD dwSignatureAlgorithm;
} WFSPINEXPORTRSAEPPSIGNEDITEM, *LPWFSPINEXPORTRSAEPPSIGNEDITEM;

typedef struct _wfs_pin_export_rsa_epp_signed_item_output
{
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxSelfSignature;
 LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT, *LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

typedef struct _wfs_pin_load_certificate
{
 LPWFSXDATA lpxLoadCertificate;
} WFSPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE;

CWA 16926-6:2020 (E)

195

typedef struct _wfs_pin_load_certificate_output
{
 LPWFSXDATA lpxCertificateData;
} WFSPINLOADCERTIFICATEOUTPUT, *LPWFSPINLOADCERTIFICATEOUTPUT;

typedef struct _wfs_pin_get_certificate
{
 WORD wGetCertificate;
} WFSPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

typedef struct _wfs_pin_get_certificate_output
{
 LPWFSXDATA lpxCertificate;
} WFSPINGETCERTIFICATEOUTPUT, *LPWFSPINGETCERTIFICATEOUTPUT;

typedef struct _wfs_pin_replace_certificate
{
 LPWFSXDATA lpxReplaceCertificate;
} WFSPINREPLACECERTIFICATE, *LPWFSPINREPLACECERTIFICATE;

typedef struct _wfs_pin_replace_certificate_output
{
 LPWFSXDATA lpxNewCertificateData;
} WFSPINREPLACECERTIFICATEOUTPUT, *LPWFSPINREPLACECERTIFICATEOUTPUT;

typedef struct _wfs_pin_start_key_exchange
{
 LPWFSXDATA lpxRandomItem;
} WFSPINSTARTKEYEXCHANGE, *LPWFSPINSTARTKEYEXCHANGE;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key
{
 LPWFSXDATA lpxImportRSAKeyIn;
 LPSTR lpsKey;
 DWORD dwUse;
} WFSPINIMPORTRSAENCIPHEREDPKCS7KEY, *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_output
{
 WORD wKeyLength;
 LPWFSXDATA lpxRSAData;
}WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT, *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT;

typedef struct _wfs_pin_emv_import_public_key
{
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wImportScheme;
 LPWFSXDATA lpxImportData;
 LPSTR lpsSigKey;
} WFSPINEMVIMPORTPUBLICKEY, *LPWFSPINEMVIMPORTPUBLICKEY;

typedef struct _wfs_pin_emv_import_public_key_output
{
 LPSTR lpsExpiryDate;
} WFSPINEMVIMPORTPUBLICKEYOUTPUT, *LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

typedef struct _wfs_pin_digest
{
 WORD wHashAlgorithm;
 LPWFSXDATA lpxDigestInput;
} WFSPINDIGEST, *LPWFSPINDIGEST;

typedef struct _wfs_pin_digest_output
{
 LPWFSXDATA lpxDigestOutput;
} WFSPINDIGESTOUTPUT, *LPWFSPINDIGESTOUTPUT;

typedef struct _wfs_pin_hsm_init
{

CWA 16926-6:2015 (E)

196

 WORD wInitMode;
 LPWFSXDATA lpxOnlineTime;
} WFSPINHSMINIT, *LPWFSPINHSMINIT;

typedef struct _wfs_pin_generate_KCV
{
 LPSTR lpsKey;
 WORD wKeyCheckMode;
} WFSPINGENERATEKCV, *LPWFSPINGENERATEKCV;

typedef struct _wfs_pin_kcv
{
 LPWFSXDATA lpxKCV;
} WFSPINKCV, *LPWFSPINKCV;

typedef struct _wfs_pin_set_guidlight
{
 WORD wGuidLight;
 DWORD dwCommand;
} WFSPINSETGUIDLIGHT, *LPWFSPINSETGUIDLIGHT;

typedef struct _wfs_pin_maintain_pin
{
 BOOL bMaintainPIN;
} WFSPINMAINTAINPIN, *LPWFSPINMAINTAINPIN;

typedef struct _wfs_pin_hsm_info
{
 WORD wHSMSerialNumber;
 LPSTR lpsZKAID;
} WFSPINHSMINFO, *LPWFSPINHSMINFO;

typedef struct _wfs_pin_hsm_detail
{
 WORD wActiveLogicalHSM;
 LPWFSPINHSMINFO *lppHSMInfo;
} WFSPINHSMDETAIL, *LPWFSPINHSMDETAIL;

typedef struct _wfs_pin_hsm_identifier
{
 WORD wHSMSerialNumber;
} WFSPINHSMIDENTIFIER, *LPWFSPINHSMIDENTIFIER;

typedef struct _wfs_pin_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSPINPOWERSAVECONTROL, *LPWFSPINPOWERSAVECONTROL;

typedef struct _wfs_pin_get_layout
{
 DWORD dwEntryMode;
} WFSPINGETLAYOUT, *LPWFSPINGETLAYOUT;

typedef struct _wfs_pin_fk
{
 USHORT usXPos;
 USHORT usYPos;
 USHORT usXSize;
 USHORT usYSize;
 WORD wKeyType;
 ULONG ulFK;
 ULONG ulShiftFK;
} WFSPINFK, *LPWFSPINFK;

typedef struct _wfs_pin_frame
{
 USHORT usFrameXPos;
 USHORT usFrameYPos;
 USHORT usFrameXSize;
 USHORT usFrameYSize;

CWA 16926-6:2020 (E)

197

 WORD wFloatAction;
 LPWFSPINFK *lppFKs;
} WFSPINFRAME, *LPWFSPINFRAME;

typedef struct _wfs_pin_layout
{
 DWORD dwEntryMode;
 USHORT usNumberOfFrames;
 LPWFSPINFRAME *lppFrames;
} WFSPINLAYOUT, *LPWFSPINLAYOUT;

typedef struct _wfs_pin_load_certificate_ex
{
 DWORD dwLoadOption;
 DWORD dwSigner;
 LPWFSXDATA lpxCertificateData;
} WFSPINLOADCERTIFICATEEX, *LPWFSPINLOADCERTIFICATEEX;

typedef struct _wfs_pin_load_certificate_ex_output
{
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxRSAData;
} WFSPINLOADCERTIFICATEEXOUTPUT, *LPWFSPINLOADCERTIFICATEEXOUTPUT;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_ex
{
 LPWFSXDATA lpxImportRSAKeyIn;
 LPSTR lpsKey;
 DWORD dwUse;
 DWORD dwCRKLLoadOption;
} WFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX, *LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEX;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_ex_output
{
 WORD wKeyLength;
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxRSAData;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYEXOUTPUT;

typedef struct _wfs_pin_start_authenticate
{
 DWORD dwCommandID;
 LPVOID lpvInputData;
} WFSPINSTARTAUTHENTICATE, *LPWFSPINSTARTAUTHENTICATE;

typedef struct _wfs_pin_start_authenticate_out
{
 HRESULT hInternalCmdResult;
 LPWFSXDATA lpxDataToSign;
 DWORD dwSigners;
} WFSPINSTARTAUTHENTICATEOUT, *LPWFSPINSTARTAUTHENTICATEOUT;

typedef struct _wfs_pin_authenticate
{
 DWORD dwSigner;
 LPSTR lpsSigKey;
 LPWFSXDATA lpxSignedData;
 DWORD dwCommandID;
 LPVOID lpvInputData;
} WFSPINAUTHENTICATE, *LPWFSPINAUTHENTICATE;

typedef struct _wfs_pin_authenticate_out
{
 HRESULT hInternalCmdResult;
 DWORD dwCommandID;
 LPVOID lpvOutputData;
} WFSPINAUTHENTICATEOUT, *LPWFSPINAUTHENTICATEOUT;

CWA 16926-6:2015 (E)

198

typedef struct _wfs_pin_synchronize_command
{
 DWORD dwCommand;
 LPVOID lpCmdData;
} WFSPINSYNCHRONIZECOMMAND, *LPWFSPINSYNCHRONIZECOMMAND;

typedef struct _wfs_pin_crypt_340
{
 LPSTR lpsKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
 LPWFSXDATA lpxVerifyData;
 LPWFSPINATTRIBUTES lpCryptAttributes;
} WFSPINCRYPT340, *LPWFSPINCRYPT340;

typedef struct _wfs_pin_block_340
{
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 DWORD dwFormat;
 LPSTR lpsKey;
 LPSTR lpsSecondEncKey;
 LPWFSPINATTRIBUTES lpPINBlockAttributes;
} WFSPINBLOCK340, *LPWFSPINBLOCK340;

typedef struct _wfs_pin_import_key_340
{
 LPSTR lpsKey;
 LPWFSPINATTRIBUTES lpKeyAttributes;
 LPWFSXDATA lpxValue;
 LPSTR lpsDecryptKey;
 DWORD dwDecryptMethod;
 LPWFSXDATA lpxVerificationData;
 LPSTR lpsVerifyKey;
 LPWFSPINATTRIBUTES lpVerifyAttributes;
 LPWFSXDATA lpxVendorAttributes;
} WFSPINIMPORTKEY340, *LPWFSPINIMPORTKEY340;

typedef struct _wfs_pin_import_key_340_out
{
 LPWFSXDATA lpxVerificationData;
 LPWFSPINATTRIBUTES lpVerifyAttributes;
 ULONG ulKeyLength;
} WFSPINIMPORTKEY340OUT, *LPWFSPINIMPORTKEY340OUT;

/*===*/
/* PIN Message Structures */
/*===*/

typedef struct _wfs_pin_access
{
 LPSTR lpsKeyName;
 LONG lErrorCode;
} WFSPINACCESS, *LPWFSPINACCESS;

typedef struct _wfs_pin_device_position
{
 WORD wPosition;
} WFSPINDEVICEPOSITION, *LPWFSPINDEVICEPOSITION;

typedef struct _wfs_pin_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSPINPOWERSAVECHANGE, *LPWFSPINPOWERSAVECHANGE;

CWA 16926-6:2020 (E)

199

typedef struct wfs_pin_dukpt_ksn
{
 LPSTR lpsKey;
 LPWFSXDATA lpxKSN;
} WFSPINDUKPTKSN, *LPWFSPINDUKPTKSN;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSPIN__H */

CWA 16926-6:2015 (E)

200

8. Appendix-A

This section provides extended explanation of concepts and functionality needing further clarification. The
terminology as described below is used within the following sections.

Definitions and Abbreviations

ATM Automated Teller Machine, used here for any type of self-service terminal,
regardless whether it actually dispenses cash

CA Certificate Authority
Certificate A data structure that contains a public key and a name that allows certification of a

public key belonging to a specific individual. This is certified using digital
signatures.

Host The remote system that an ATM communicates with.
KTK Key Transport Key
PKI Public Key Infrastructure
Private Key That key of an entity’s key pair that should only be used by that entity.
Public Key That key of an entity’s key pair that can be made public.
Symmetric Key A key used with symmetric cryptography
Verification Key A key that is used to verify the validity of a certificate
SignatureIssuer An entity that signs the ATM´s public key at production time, may be the ATM

manufacturer

Notation of Cryptographic Items and Functions

SKE The private key belonging to entity E
PKE The public belonging to entity E
SKATM The private key belonging to the ATM/PIN
PKATM The public key belonging to the ATM/PIN
SKHOST The private key belonging to the Host
PKHOST The public key belonging to the Host
SKSI The private key belonging to Signature Issuer
PKSI The public key belonging to Signature Issuer
SKROOT The root private key belonging to the Host
PKROOT The root public key belonging to the Host
KNAME A symmetric key
CertHOST A Certificate that contains the public verification of the host and is signed by a

trusted Certificate Authority.
CertATM A Certificate that contains the ATM/PIN public verification or encipherment key,

which is signed by a trusted Certificate Authority.
CertCA The Certificate of a new Certificate Authority
RATM Random Number of the ATM/PIN
IHOST Identifier of the Host
KKTK Key Transport Key
RHOST Random number of the Host
IATM Identifier of the ATM/PIN
TPATM Thumb Print of the ATM/PIN
Sign(SKE)[D] The signing of data block D, using the private key SKE
Recover(PKE)[S] The recovery of the data block D from the signature S, using the private key PKE
RSACrypt(PKE)[D] RSA Encryption of the data block D using the public key PKE
Hash [M] Hashing of a message M of arbitrary length to a 20 Byte hash value
Des(K) [D] DES encipherment of an 8 byte data block D using the secret key K
Des-1(K)[D] DES decipherment of an 8 byte data block D using the 8 byte secret key K
Des3(K)[D] Triple DES encipherment of an 8 byte data block D using the 16 byte secret key K =

(KL || KR), equivalent to Des(KL) [Des-1(KR) [Des(KL) [D]]]
Des3-1 (K) [D] Triple DES decipherment of an 8 byte data block D using the 16 byte secret key K =

(KL || KR), equivalent to Des-1 (KL) [Des (KR) [Des-1 (KL) [D]]]
RndE A random number created by entity E
UIE Unique Identifier for entity E
(A || B) Concatenation of A and B

CWA 16926-6:2020 (E)

201

8.1 Remote Key Loading Using Signatures

8.1.1 RSA Data Authentication and Digital Signatures

Digital signatures rely on a public key infrastructure (PKI). The PKI model involves an entity, such as a Host,
having a pair of encryption keys – one private, one public. These keys work in consort to encrypt, decrypt and
authenticate data. One way authentication occurs is through the application of a digital signature. For example:

1. The Host creates some data that it would like to digitally sign;

2. Host runs the data through a hashing algorithm to produce a hash or digest of the data. The digest is unique
to every block of data – a digital fingerprint of the data, much smaller and therefore more economical to
encrypt than the data itself.

3. Digest is encrypted with the Host’s private key.

This is the digital signature – a data block digest encrypted with the private key. The Host then sends the following
to the ATM:

1. Data block.

2. Digital signature.

3. Host’s public key.

To validate the signature, the ATM performs the following:

1. ATM runs data through the standard hashing algorithm – the same one used by the Host – to produce a
digest of the data received. Consider this digest2;

2. ATM uses the Host’s public key to decrypt the digital signature. The digital signature was produced using
the Host’s private key to encrypt the data digest; therefore, when decrypted with the Host’s public key it
produces the same digest. Consider this digest1. Incidentally, no other public key in the world would work
to decrypt digest1 – only the public key corresponding to the signing private key.

3. ATM compares digest1 with digest2.

If digest1 matches digest2 exactly, the ATM has confirmed the following:

• Data was not tampered with in transit. Changing a single bit in the data sent from the Host to the ATM
would cause digest2 to be different than digest1. Every data block has a unique digest; therefore, an altered
data block is detected by the ATM.

• Public key used to decrypt the digital signature corresponds to the private key used to create it. No other
public key could possibly work to decrypt the digital signature, so the ATM was not handed someone
else’s public key.

This gives an overview of how Digital Signatures can be used in Data Authentication. In particular, Signatures can
be used to validate and securely install Encryption Keys. The following section describes Key Exchange and the
use of Digital signatures.

CWA 16926-6:2015 (E)

202

8.1.2 RSA Secure Key Exchange using Digital Signatures

In summary, both end points, the ATM and the Host, inform each other of their Public Keys. This information is
then used to securely send the PIN device Master Key to the ATM. A trusted third party, the Signature Issuer, is
used to generate the signatures for the Public keys of each end point, ensuring their validity.

The detail of this is as follows:

Purpose: The Host wishes to install a new master key (KM) on the ATM securely.

Assumptions:

1. The Host has obtained the Public Key (PKSI) from the Signature Issuer.

2. The Host has provided the Signature Issuer with its Public Key (PKHOST), and receives the corresponding
signature Sign(SKSI)[PKHOST]. The Signature Issuer uses its own Private Key (SKSI) to create this
signature.

3. In the case where Enhanced Remote Key Loading is used, the host has provided the Signature Issuer with
its Public Key (PKROOT), and receives the corresponding signature Sign(SKSI)[PKROOT]. The host has
generated another key pair PKHOST and SKHOST and signs the PKHOST with the SKROOT.

4. (Optional) The host obtains a list of the valid PIN device’s Unique Identifiers. The Signature Issuer installs
a Signature Sign(SKSI)[UIATM] for the Unique Id (UIATM) on the ATM PIN. The Signature Issuer uses
SKSI to do this.

5. The Signature Issuer installs its Public Key (PKSI) on the ATM PIN. It also derives and installs the
Signature Sign(SKSI)[PKATM] of the ATM PIN’s Public Key (PKATM) on the ATM PIN. The Signature
Issuer uses SKSI to do this.

6. The ATM PIN device additionally contains its own Public (PKATM) and Private Key (SKATM).

Step 1
The ATM PIN sends its Public Key to the Host in a secure structure:

The ATM PIN sends its ATM Public Key with its associated Signature. When the Host receives this information it
will use the Signature Issuer’s Public Key to validate the signature and obtain the ATM Public Key.

The XFS command used to export the PIN public key securely as described above is
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM.

Step 2 (Optional)
The Host verifies that the key it has just received is from a valid sender.

It does this by obtaining the PIN device unique identifier. The ATM PIN sends its Unique Identifier with its
associated Signature. When the Host receives this information it will use the Signature Issuer’s Public Key to
validate the signature and retrieve the PIN Unique Identifier. It can then check this against the list it received from
the Signature Issuer.

The XFS command used to export the PIN Unique Identifier is
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM.

Step 3 (Enhanced Remote Key Loading only)
The Host sends its root public key to the ATM PIN:

The Host sends its Root Public Key (PKROOT) and associated Signature. The ATM PIN verifies the signature using
PKSI and stores the key.

The XFS command used to import the host root public key securely as described above is
WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY.

Step 4
The Host sends its public key to the ATM PIN:

The Host sends its Public Key (PKHOST) and associated Signature. The ATM PIN verifies the signature using PKSI
(or PKROOT in the Enhanced Remote Key Loading Scheme) and stores the key.

The XFS command used to import the host public key securely as described above is
WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY.

Step 5
The ATM PIN receives its Master Key from the Host:

CWA 16926-6:2020 (E)

203

The Host encrypts the Master Key (KM) with PKATM. A signature for this is then created using SKHOST. The ATM
PIN will then validate the signature using PKHOST and then obtain the master key by decrypting using SKATM.

The XFS commands used to exchange master symmetric keys as described above are:

• WFS_CMD_PIN_START_KEY_EXCHANGE

• WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

Step 6 – Alternative including random number
The host requests the ATM PIN to begin the DES key transfer process and generate a random number.

The Host encrypts the Master Key (KM) with PKATM. A signature for the random number and encrypted key is then
created using SKHOST.

The ATM PIN will then validate the signature using PKHOST, verify the random number and then obtain the master
key by decrypting using SKATM.

The XFS commands used to exchange master symmetric keys as described above are:

• WFS_CMD_PIN_START_KEY_EXCHANGE

• WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

The following diagrams summaries the key exchange process described above:

CWA 16926-6:2015 (E)

204

8.1.3 Initialization Phase – Signature Issuer and ATM PIN

This would typically occur in a secure manufacturing environment.

Signature
Issuer

PIN

PKATM
PKSI
Sign(SKSI)[PKATM]
SKATM

UIATM

Sign(SKSI)[UIATM]

PKATM

PKSI

Sign(SKSI)[PKATM]

UIATM

Sign(SKSI)[UIATM]

CWA 16926-6:2020 (E)

205

8.1.4 Initialization Phase – Signature Issuer and Host

This would typically occur in a secure offline environment.

Signature
Issuer

Host

PKHOST
PKSI
Sign(SKSI)[PKHOST]
SKHOST

PKHOST

PKSI

Sign(SKSI)[PKHOST]

CWA 16926-6:2015 (E)

206

8.1.5 Key Exchange – Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key in a typical ATM
Network. The following is the recommended sequence of interchanges.

Host

Host validates
signature with PKSI
:-

PKATM obtained

Host validates
signature with PKSI
:-

UIATM obtained &
verified against
list

Encrypt KM with
PKATM and generate
Signature for result
using SKHOST.

PIN

Optionally send PIN
Unique Identifier

PIN validates
signature with PKSI
:-

PKHOST obtained

PIN validates
signature with
PKHOST, and obtains
KM by decrypting
with SKATM

KM obtained

PKATM||Sign(SKSI)[PKATM]

PKHOST||Sign(SKSI)[PKHOST]

RSACrypt(PKATM)[KM]||Sign(SKHOST)[
RSACrypt(PKATM)[KM]]

UIATM||Sign(SKSI)[UIATM]

CWA 16926-6:2020 (E)

207

8.1.6 Key Exchange (with random number) – Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key when the PIN device and
Service Provider supports the WFS_CMD_PIN_START_KEY_EXCHANGE command.

Request RATM

Host

Host validates
signature with PKSI
:-

PKATM obtained

Host validates
signature with PKSI
:-

UIATM obtained &
verified against
list

Host requests
random number
RATM

Encrypt KM with
PKATM and generate
Signature for RATM
and encryption
result using SKHOST.

PIN

Optionally send PIN
Unique Identifier

PIN validates
signature with PKSI
:-

PKHOST obtained

PIN generates
random number,
RATM, and starts key
exchange

PIN validates
signature with
PKHOST, validates
RATM and obtains KM
by decrypting with
SKATM

KM obtained

PKATM||Sign(SKSI)[PKATM]

PKHOST||Sign(SKSI)[PKHOST]

RATM||RSACrypt(PKATM)[KM]
||Sign(SKHOST)[RATM ||RSACrypt(PKATM

)[KM]]

UIATM||Sign(SKSI)[UIATM]

RATM

CWA 16926-6:2015 (E)

208

8.1.7 Enhanced RKL, Key Exchange (with random number) – Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key when the PIN device and
Service Provider supports the Enhanced Signature Remote Key Loading scheme.

Request RATM

Host

Host validates
signature with PKSI
:-PKATM obtained

Host validates
signature with PKSI
:-UIATM obtained
& verified
against list

Host sends root
public key PKROOT

Host sends PKHOST

Host requests
random number
RATM

Encrypt KM with
PKATM and generate
Signature for RATM
and encryption
result using SKHOST.

PIN

Optionally send PIN
Unique Identifier

PIN validates
signature with PKSI
:- PKROOT
obtained

PIN validates
signature with
PKROOT :- PKHOST
obtained

PIN generates
random number,
RATM, and starts key
exchange

PIN validates
signature with
PKHOST, validates
RATM and obtains KM
by decrypting with
SKATM

KM obtained

PKATM||Sign(SKSI)[PKATM]

PKROOT||Sign(SKSI)[PKROOT]

RATM||RSACrypt(PKATM)[KM]
||Sign(SKHOST)[RATM ||RSACrypt(PKATM

)[KM]]

UIATM||Sign(SKSI)[UIATM]

RATM

PKHOST||Sign(SKROOT)[PKHOST]

CWA 16926-6:2020 (E)

209

8.1.8 Default Keys and Security Item loaded during manufacture

Several keys and a security item which are mandatory for the 2 party/Signature authentication scheme are installed
during manufacture. These items are given fixed names so multi-vendor applications can be developed without the
need for vendor specific configuration tools.
Item Name Item Type Signed by Description
“_SigIssuerVendor” Public Key N/A The public key of the signature

issuer, i.e. PKSI
“_EPPCryptKey” Public/Private

key-pair
The private key
associated with
_SigIssuerVendor

The key-pair used to encrypt and
decrypt the symmetric key, i.e.
SKATM and PKATM. The public
key is used for encryption by the
host and the private for
decryption by the EPP.

In addition the following optional keys can be loaded during manufacture.
Item Name Item Type Signed by Description
“_EPPSignKey” Public/Private

key-pair
The private key
associated with
_SigIssuerVendor

A key-pair where the private key
is used to sign data, e.g. other
generated key pairs.

CWA 16926-6:2015 (E)

210

8.2 Remote Key Loading Using Certificates

The following sections demonstrate the proper usage of the CEN PIN interface to accomplish Remote Key Loading
using Certificates. Beginning with Section 8.2.5, there are sequence diagrams to demonstrate how the CEN PIN
interface can be used to complete each of the TR34 operations.

8.2.1 Certificate Exchange and Authentication

In summary, both end points, the ATM and the Host, inform each other of their Public Keys. This information is
then used to securely send the PIN device Master Key to the ATM. A trusted third party, Certificate Authority (or a
HOST if it becomes the new CA), is used to generate the certificates for the Public Keys of each end point,
ensuring their validity. NOTE: The WFS_CMD_PIN_LOAD_CERTIFICATE and
WFS_CMD_PIN_GET_CERTIFICATE do not necessarily need to be called in the order below. This way though is
the recommend way.

The following flow is how the exchange authentication takes place:

• WFS_CMD_PIN_LOAD_CERTIFICATE is called. In this message contains the host certificate, which
has been signed by the trusted CA. The encryptor uses the Public Key of the CA (loaded at the time of
production) to verify the validity of the certificate. If the certificate is valid, the encryptor stores the
HOST’s Public Verification Key.

• Next, WFS_CMD_PIN_GET_CERTIFICATE is called. The encryptor then sends a message that contains
a certificate, which is signed by the CA and is sent to the HOST. The HOST uses the Public Key from the
CA to verify the certificate. If valid then the HOST stores the encryptor’s verification or encryption key
(primary or secondary this depends on the state of the encryptor).

The following diagram shows how the Host and ATM Load and Get each other’s information to make Remote Key
Loading possible:

Host

The Host sends its
CertHost to the ATM.

The Host Requests
the ATM Keys.

The Host verifies the
message. If it
verifies then it
stores the key.

PIN

The PIN verifies the
message. If it verifies
then it stores the key
and returns the
thumbprint.

The PIN sends the
keys inside of a
certificate.

CertHOST

CertATM

TPATM

Request for CertATM

CWA 16926-6:2020 (E)

211

8.2.2 Remote Key Exchange

After the above has been completed, the HOST is ready to load the key into the encryptor. The following is done to
complete this and the application must complete the Remote Key Exchange in this order:

1. First, the WFS_CMD_PIN_START_KEY_EXCHANGE is called. This returns RATM from the encryptor
to be used in the authenticating the WFS_CMD_PIN_IMPORT_RSA_ENCHIPERED_PKCS7_KEY
message.

2. Next, WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY is called. This command sends
down the KTK to the encryptor. The following items below show how this is accomplished.

a) HOST has obtained a Key Transport Key and wants to transfer it to the encryptor. HOST constructs a
key block containing an identifier of the HOST, IHOST, and the key, KKTK, and enciphers the block,
using the encryptor’s Public Encryption Key from the WFS_CMD_PIN_GET CERTIFICATE
command.

b) After completing the above, the HOST generates random data and builds the outer message containing
the random number of the host, RHOST, the random number of the encryptor returned in the
WFS_CMD_PIN_START_KEY_EXCHANGE command, RATM , the identifier of the encryptor, IENC,
and the enciphered key block. The HOST signs the whole block using its private signature key and
sends the message down to the encryptor.

The encryptor then verifies the HOST’s signature on the message by using the HOST’s Public
Verification Key. Then the encryptor checks the identifier and the random number of the encryptor
passed in the message to make sure that the encryptor is talking to the right HOST. The encryptor then
deciphers the enciphered block using its private verification key. After the message has been
deciphered, the encryptor checks the Identifier of the HOST. Finally, if everything checks out to this
point the encryptor will load the Key Transport Key. NOTE: If one step of this verification occurs the
encryptor will return the proper error to the HOST.

c) After the Key Transport Key has been accepted, the encryptor constructs a message that contains the
random number of the host, the random number of the encryptor and the HOST identifier all signed
by the private signature key of the encryptor. This message is sent to the host.

d) The HOST verifies the message sent from the encryptor by using the ATM’s public verification key.
The HOST then checks the identifier of the host and then compares the identifier in the message with
the one stored in the HOST. Then checks the random number sent in the message and to the one
stored in the HOST. The HOST finally checks the encryptor’s random number with the one received
in received in the WFS_CMD_PIN_START_KEY_EXCHANGE command.

The following diagram below shows how the Host and ATM transmit the Key Transport Key.

Host

The Host starts
the Key
Exchange
process.

The Host sends the
Signed Key
Transport Key
message to the
ATM.

The Host
receives the
message and
verifies the
message and
checks to make

PIN

The PIN
generates
random number
and sends it to
the host

The PIN verifies
the messages
and if validate
stores the key.
The PIN then
sends a message
back to the Host.

RATM

Sign(SKHost)[RHost||RATM||IATM||RSACrypt(PKATM)[IHost||KKTK]]

Sign(SKATM)[RHost||RATM||IHost]

Request RATM

CWA 16926-6:2015 (E)

212

8.2.3 Replace Certificate

After the key is been loaded into the encryptor, the following could be completed:

• (Optional) WFS_CMD_PIN_REPLACE_CERTIFICATE. This is called by entity that would like to take
over the job of being the CA. The new CA requests a Certificate from the previous Certificate Authority.
The HOST must over-sign the message to take over the role of the CA to ensure that the encryptor accepts
the new Certificate Authority. The HOST sends the message to the encryptor. The encryptor uses the
HOST’s Public Verification Key to verify the HOST’s signature. The encryptor uses the previous CA’s
Public Verification Key to verify the signature on the new Certificate sent down in the message. If valid,
the EPP stores the new CA’s certificate and uses the new CA’s Public Verification Key as its new CA
verification key. The diagram below shows how the Host and the ATM communicate to load the new CA.

Host

Host wants to
take CA duties,
sends new
Certificate

PIN

The PIN verifies
the message, if
valid the PIN
stores the new
CA.
The PIN then
sends the

Sign(SKHost)[CertCA]

TPATM

CWA 16926-6:2020 (E)

213

8.2.4 Primary and Secondary Certificates

Primary and Secondary Certificates for both the Public Verification Key and Public Encipherment Key are pre-
loaded into the encryptor. Primary Certificates will be used until told otherwise by the HOST via the
WFS_CMD_PIN_LOAD_CERTIFICATE or WFS_CMD_PIN_REPLACE_CERTIFICATE commands. This
change in state will be specified in the PKCS #7 message of the WFS_CMD_PIN_LOAD_CERTIFICATE or
WFS_CMD_PIN_REPLACE_CERTIFICATE commands. The reason why the HOST would want to change states
is because the HOST thinks that the Primary Certificates have been compromised.

After the HOST tells the encryptor to shift to the secondary certificate state, only Secondary Certificates can be
used. The encryptor will no longer be able to go back to the Primary State and any attempts from the HOST to get
or load a Primary Certificate will return an error. When either Primary or Secondary certificates are compromised it
is up to the vendor on how the encryptor should be handled with the manufacturer.

CWA 16926-6:2015 (E)

214

8.2.5 TR34 BIND To Host

This section defines the command to use when transferring a TR34 BIND token as defined in X9 TR34-2012 [Ref.
42].

This step is a pre-requisite for all other TR34 operations. The PIN device must be bound to a host before any other
TR34 operation will succeed.

It is recommended that the encryption certificate retrieved during this process is stored for future use otherwise it
will need to be requested prior to every operation.

WFS_CMD_PIN_LOAD_CERTIFICATE_EX
(WFS_PIN_LOAD_NEWHOST,
WFS_PIN_SIGNER_CA)

PKCS#7 Certificate

Host PIN
WFS_CMD_PIN_GET_CERTIFICATE

Checksum of public key (optional)

CWA 16926-6:2020 (E)

215

8.2.6 TR34 Key Transport

There are two mechanisms that can be used to transport symmetric keys under TR34; these are the One Pass and
Two Pass protocols. The use of CEN commands for these two protocols are shown in the following sections.

NOTE: Refer to dwCRKLLoadOptions in the WFS_INF_PIN_CAPABILITIES output structure for an indication of
whether the PIN device supports one-pass and/or two-pass protocols.

8.2.6.1 One Pass

This section defines the command to use when transferring a TR34 KEY token (1-pass) as defined in X9 TR34-
2012 [Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

WFS_CMD_PIN_IMPORT_RSA_ENCIPHERE
D_PKCS7_KEY_EX
(WFS_PIN_CRKLLOAD_CRL)

Host PIN

KCV of new key

CWA 16926-6:2015 (E)

216

8.2.6.2 Two Pass

This section defines the command to use when transferring a TR34 KEY token (2-pass) as defined in reference [n].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

NB: Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

WFS_CMD_PIN_START_KEY_EXCHANGE

WFS_CMD_PIN_IMPORT_RSA_ENCIPHERE
D_PKCS7_KEY_EX
(WFS_PIN_CRKLLOAD_RANDOM_CRL)

Random Number Token

Host PIN

KCV of new key

PKCS#7 Certificate

WFS_CMD_PIN_GET_CERTIFICATE
(WFS_PIN_PUBLICENCKEY)

CWA 16926-6:2020 (E)

217

8.2.7 TR34 REBIND To New Host

This section defines the command to use when transferring a TR34 REBIND token as defined in X9 TR34-2012
[Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

NB: Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

WFS_CMD_PIN_START_KEY_EXCHANGE

WFS_CMD_PIN_LOAD_CERTIFICATE_EX
(WFS_PIN_LOAD_REPLACEHOST,
WFS_PIN_SIGNER_CERTHOST)

Random number token

Host PIN
PKCS#7 Certificate

WFS_CMD_PIN_GET_CERTIFICATE
(WFS_PIN_PUBLICENCKEY)

CWA 16926-6:2015 (E)

218

8.2.8 TR34 Force REBIND To New Host

This section defines the command to use when transferring a TR34 Force REBIND token as defined in X9 TR34-
2012 [Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

NB:

Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

Although the random number token is requested as part of this operation, it is discarded by the host and is not
actually used in the Force Rebind token.

WFS_CMD_PIN_START_KEY_EXCHANGE

WFS_CMD_PIN_LOAD_CERTIFICATE_EX
(WFS_PIN_LOAD_REPLACEHOST,
WFS_PIN_SIGNER_HL)

Random number token

Host PIN
PKCS#7 Certificate

WFS_CMD_PIN_GET_CERTIFICATE
(WFS PIN PUBLICENCKEY)

CWA 16926-6:2020 (E)

219

8.2.9 TR34 UNBIND From Host

This section defines the command to use when transferring a TR34 UNBIND token as defined in X9 TR34-2012
[Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

NB:

Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

WFS_CMD_PIN_GET_CERTIFICATE
(WFS_PIN_PUBLICENCKEY)

WFS_CMD_PIN_START_AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION)

WFS_CMD_PIN_AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION,
WFS_PIN_SIGNER_HOST |
WFS_PIN_SIGNER_TR34)

Data to sign

Host PIN
PKCS#7 Certificate

CWA 16926-6:2015 (E)

220

8.2.10 TR34 Force UNBIND From Host

This section defines the command to use when transferring a TR34 Force UNBIND token as defined in X9 TR34-
2012 [Ref. 42].

Pre-condition: A successful BIND command has completed such that the PIN device is bound to the host.

NB:

Dotted lines represent commands that are only required if the PIN device encryption certificate has not been
previously stored by the host.

Although the random number token is requested as part of this operation, it is discarded by the host and is not
actually used in the Force Unbind token.

WFS_CMD_PIN_START_AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION)

WFS_CMD_PIN_AUTHENTICATE
(WFS_CMD_PIN_INITIALIZATION,
WFS_PIN_SIGNER_HL |
WFS_PIN_SIGNER_TR34)

Data to sign

Host PIN
PKCS#7 Certificate

WFS_CMD_PIN_GET_CERTIFICATE
(WFS_PIN_PUBLICENCKEY)

CWA 16926-6:2020 (E)

221

8.3 German ZKA GeldKarte (Deutsche Kreditwirtschaft)

The PIN service is able to handle the German "Geldkarte", which is an electronic purse specified by the DK
(Deutsche Kreditwirtschaft) formerly known as the ZKA (Zentraler Kreditausschuß) protocol.

For anyone attempting to write an application that handles this type of chip card, it is essential to read and
understand the ZKA specifications see [Ref 17], [Ref 6] and [Ref 7].

8.3.1 How to use the SECURE_MSG commands

This is to describe how an application should use the WFS_CMD_PIN_SECURE_MSG_SEND and
WFS_CMD_PIN_SECURE_MSG_RECEIVE commands for transactions involving chipcards with a German ZKA
GeldKarte chip.

• Applications must call SECURE_MSG_SEND for every command they send to the chip or to a host
system, including those commands that do not actually require secure messaging. This enables the Service
Provider to remember security-relevant data that may be needed or checked later in the transaction.

• Applications must pass a complete message as input to SECURE_MSG_SEND, with all fields - including
those that will be filled by the Service Provider - being present in the correct length. All fields that are not
filled by the Service Provider must be filled with the ultimate values in order to enable MACing by the
Service Provider.

• Every command SECURE_MSG_SEND that an application issues must be followed by exactly one
command SECURE_MSG_RECEIVE that informs the Service Provider about the response from the chip
or host. If no response is received (timeout or communication failure) the application must issue a
SECURE_MSG_RECEIVE command with lpSecMsgIn->lpbMsg = NULL to inform the Service Provider
about this fact.

• If a system is restarted after a SECURE_MSG_SEND was issued to the Service Provider but before the
SECURE_MSG_RECEIVE was issued, the restart has the same effect as a SECURE_MSG_RECEIVE
command with lpSecMsgIn->lpbMsg = NULL.

• Between a SECURE_MSG_SEND and the corresponding SECURE_MSG_RECEIVE no
SECURE_MSG_SEND with the same lpSecMsgIn->wProtocol must be issued. Other WFS_CMD_PIN...
commands – including SECURE_MSG_SEND / RECEIVE with different wProtocol – may be used.

CWA 16926-6:2015 (E)

222

8.3.2 Protocol WFS_PIN_PROTISOAS

This protocol handles ISO8583 messages between an ATM and an authorization system (AS).

Only messages in the new ISO format, with new PAC/MAC-format using session keys and Triple-DES are
supported.

Authorization messages may be used to dispense the amount authorized in cash or to load the amount into an
electronic purse (GeldKarte).

For loading a GeldKarte the only type of authorization supported is a transaction originating from track 3 of a
German ec-card (message types 0200/0210 for authorization and 0400/0410 for reversal).

For dispensing cash, transactions originating from international cards (message types 0100/0110 and 0400/0410)
are supported as well.

The following bitmap positions are filled by the Service Provider:

• BMP11 - Trace-Nummer

• BMP52 - PAC

• BMP57 - Verschlüsselungsparameter (only the challenge values RNDMES and RNDPAC)

• BMP64 - MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the Service Provider and have to be filled by the application:

• Nachrichtentyp

• BMP3 - Abwicklungskennzeichen (only for GeldKarte, not for cash)

• BMP4 - Transaktionsbetrag (only for GeldKarte, not for cash)

• BMP41 - Terminal-ID

• BMP42 - Betreiber-BLZ

For additional documentation of authorization messages see [Ref. 27] – [Ref. 30].

CWA 16926-6:2020 (E)

223

8.3.3 Protocol WFS_PIN_PROTISOLZ

This protocol handles ISO8583 messages between a „Ladeterminal" and a „Ladezentrale" (LZ).

Only messages in the new ISO format, with new MAC-format using session keys and Triple-DES are supported.

Both types of GeldKarte chip (type 0 = DEM, type 1 = EUR) are supported.

The following bitmap positions are filled by the Service Provider:

• BMP11: Trace-Nummer

• BMP57: Verschlüsselungsparameter (only the challenge value RNDMES)

• BMP64: MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the Service Provider and have to be filled by the application:

• Nachrichtentyp

• BMP3: Abwicklungskennzeichen

• BMP4: Transaktionsbetrag

• BMP12: Uhrzeit

• BMP13: Datum

• BMP25: Konditionscode

• BMP41: Terminal-ID

• BMP42: Betreiber-BLZ (caution: "Ladeentgelt" also in BMP42 is not set by the EPP)

• BMP61: Online-Zeitpunkt

• BMP62: Chipdaten

The following bitmap positions are only checked if they are available:

• BMP43: Standort

• BMP60: Kontodaten Ladeterminal

For a documentation of the Ladezentrale interface see [Ref. 31].

CWA 16926-6:2015 (E)

224

8.3.4 Protocol WFS_PIN_PROTISOPS

This protocol handles ISO8583 messages between a terminal and a "Personalisierungsstelle" (PS). These messages
are about OPT.

The Service Provider creates the whole message with WFS_CMD_PIN_SECURE_MSG_SEND, including
message type and bitmap.

For a documentation of the Personalisierungsstelle interface see [Ref. 7].

CWA 16926-6:2020 (E)

225

8.3.5 Protocol WFS_PIN_PROTCHIPZKA

This protocol is intended to handle messages between the application and a GeldKarte.

Both types of GeldKarte are supported.

Both types of load transactions ("Laden vom Kartenkonto" and "Laden gegen andere Zahlungsmittel") are
supported.

See the chapter "Command Sequence" below for the actions that Service Providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the Service Provider, the
ATR (answer to reset) data from the chip is not passed to the Service Provider.

For a documentation of the chip commands used to load a GeldKarte see [Ref. 31].

CWA 16926-6:2015 (E)

226

8.3.6 Protocol WFS_PIN_PROTRAWDATA

This protocol is intended for vendor-specific purposes. Generally the use of this protocol is not recommended and
should be restricted to issues that are impossible to handle otherwise.

For example a HSM that requires vendor-specific, cryptographically secured data formats for importing keys or
terminal data may use this protocol.

Application programmers should be aware that the use of this command may prevent their applications from
running on different hardware.

CWA 16926-6:2020 (E)

227

8.3.7 Protocol WFS_PIN_PROTPBM

This protocol handles host messages between a terminal and a host system, as specified by PBM protocol.

For documentation of this protocol see [Ref. 8] – [Ref. 13].

Some additions are defined to the PBM protocol in order to satisfy the German ZKA 3.0 PAC/MAC standard. See
[Ref. 14].

The commands WFS_CMD_PIN_SECURE_MSG_SEND and WFS_CMD_PIN_SECURE_MSG_RECEIVE
handle the PAC and MAC in the VARDATA ‘K’ or ‘Q’ subfield of transactions records and responses. The MAC
in the traditional MACODE field is not affected.

In order to enable the Service Provider to understand the messages, the application must provide the messages
according to the following rules:

• All alphanumeric fields must be coded in EBCDIC.

• Pre-Edit (padding and blank compression) must not be done by the application. The Service Provider will
check the MACMODE field and will perform the pre-edit according to what the MACMODE field
intends.

• In order to enable the Service Provider to find the vardata subfield ‘K’ or ‘Q’, it must be included in the
message by the application, with the indicator ‘K’ or ‘Q’ and its length set.

• Because CARDDATA (track 2) and T3DATA (track 3) fields always take part in the MAC computation
for a transaction record, these fields must be included in the message, even if they already have been sent
to the host in a previous transaction record and the CI-Option SHORTREC prevents them from being sent
again.

CWA 16926-6:2015 (E)

228

8.3.8 Protocol WFS_PIN_PROTHSMLDI

With this protocol an application can request information about the personalized OPT groups.

The information returned consists of personalization record like in BMP62 of an OPT response but without MAC.

Data format:

XX XX VV - group ID and version number (BCD format)
XX - number of LDIs within the group (BCD format)
…
first LDI of the group
…
last LDI of the group
XX XX VV - group ID and version number (BCD format)
...
etc. for several groups

Each LDI consists of:

NN Number of the LDI
00 Alg. Code
LL Length of the following data
XX...XX data of the LDI

For each group ID the Service Provider must always return the standard LDI. LDI 01 must also be returned for
groups AF XX VV. Further LDIs can be returned optionally.

CWA 16926-6:2020 (E)

229

8.3.9 Protocol WFS_PIN_PROTGENAS

This protocol provides the capability to create a PAC (encrypted PIN block) and to create and verify a MAC for a
proprietary message. As the Service Provider does not know the message format, it cannot complete the message by
adding security relevant fields like random values, PAC and MAC, like it does for the protocol
WFS_PIN_PROTISOAS. Only the application is able to place these fields into the proper locations. Using this
protocol, an application can generate the PAC and the random values in separate steps, adds them to the proprietary
send-message, and finally lets the Service Provider generate the MAC. The generated MAC can then be added to
the send-message as well.

For a received message, the application extracts the MAC and the associated random value and passes them along
with the entire message data to the Service Provider for MAC verification.

PAC generation supports PIN block ISO-Format 0 and 1 for 3DES and ISO-Format 4 for AES.

Command description:
The first byte of field lpbMsg of WFSPINSECMSG contains a subcommand, which is used to qualify the type of
operation. The remaining bytes of the command data are depending on the value of the subcommand.

The following sub-commands are defined:

• GeneratePAC 3DES (Code 0x01)
Returns the encrypted PIN block together with generation and version values of the Master Key and the
PAC random value.

• GetMACRandom 3DES (Code 0x02)
Returns the generation and version values of the Master Key and the MAC random value.

• GenerateMAC 3DES (Code 0x03)
Returns the generated MAC for the message data passed in. Note that the MAC is generated for exactly
the data that is presented (contents and sequence). Data that should not go into MAC calculation must not
be passed in.

• VerifyMAC 3DES (Code 0x04)
Generates a MAC for the data passed in and compares it with the provided MAC value. MAC random
value, key generation and key version must be passed in separately.

• Generate PAC AES (Code 0x05)
Returns the encrypted PIN block wrapped in the BMP110.2 (Dataset 01).

• Get MAC Random AES (Code 0x06)
Returns the MAC random value wrapped in the BMP110.3 (Dataset 02).

• Generate MAC AES (Code 0x07)
Returns the generated MAC for the message data passed in. Note that the MAC is generated for exactly
the data that is presented (contents and sequence). Data that should not go into MAC calculation must not
be passed in.
Used algorithm is CMAC.

• Verify MAC AES (Code 0x08)
Generates a MAC for the data passed in and compares it with the provided MAC value. The MAC data
must be passed in as BMP110.3 (Dataset 02) in the format:
08 (sub-command) + BMP110.3 + MAC + message to be verified.

CWA 16926-6:2015 (E)

230

Command/Message sequence:

Command
WFS_CMD_PIN_

lpbMsg in
lpbSecMsgIn

lpbMsg in
lpbSecMsgOut

Service Provider´s
actions

SECURE_MSG_SEND Byte 0: 0x01
(Generate PAC)
Byte 1: format (0 or 1)
Byte 2-9: ANF (Primary
Account Number, if
length is less than 12
digits, value must be left
padded with binary 0,
only applicable for
format 0)

Byte 0: key generation
Byte 1: key version
Byte 2-17: PAC random
Byte 18-25: PAC value
(all values are binary
values)

Generates a session key for
PAC generation and
finally the PAC
itself.
Determine generation and
version values of Master-
Key and return them along
with the random value.

SECURE_MSG_SEND Byte 0: 0x02
(Get MAC Random)

Byte 0: key generation
Byte 1: key version
Byte 2-17: MAC random
(all values are binary
values)

Generates a session key for
MAC generation (see next
step below)
Determine generation and
version values of Master-
Key and return them along
with the random value

SECURE_MSG_SEND Byte 0: 0x03
(Generate MAC)
Byte 1-n: Message to be
mac’ed (all values are
binary values)

Byte 0-7: generated MAC
(binary value)

Generates MAC over bytes
1-n of the inbound
message using the session
key created in the previous
step.

SECURE_MSG_RECEIVE Byte 0: 0x04
(Verify MAC)
Byte 1: key generation
Byte 2: key version
Byte 3-18: MAC random
Byte 19-26: MAC
Byte 27-n: Message to be
verified (all values are
binary values)
NOTE: If no message
has been received, this
function must be called
by omitting Bytes 1-n

N/a Generates a session key
using the Master key
identified by key
generation and version by
using the random value
passed in.
Generates a MAC for the
message data passed in and
compare the resulting
MAC with the MAC
passed in.

CWA 16926-6:2020 (E)

231

Command
WFS_CMD_PIN_

lpbMsg in
lpbSecMsgIn

lpbMsg in
lpbSecMsgOut

Service Provider´s
actions

SECURE_MSG_SEND Byte 0: 0x05 (Generate
PAC AES)
Byte 1: format (4)

Byte 0: 01 Identification
for Dataset 01
Byte 1-2: length of data
Byte 3-n: data

Generates a session key for
PAC generation and
finally the PAC
itself.
Returned values are in the
format of dataset 01 of
BMP110

SECURE_MSG_SEND Byte 0: 06 (Get MAC
Random AES)

Byte 0: 02 Identification
for Dataset 02
Byte 1-2: length of data
Byte 3-n: data

Generates a session key for
MAC generation (see next
step below)
Returned values are in the
format of dataset 02 of
BMP110

SECURE_MSG_SEND Byte 0: 0x07 (Generate
MAC AES)
Byte 1-n: Message to be
mac’ed (all values are
binary values)

Byte 0-7: generated MAC
(binary value)

Generates MAC over bytes
1-n of the inbound
message using the session
key created in the previous
step.

SECURE_MSG_RECEIVE Byte 0: 0x08 (Verify
MAC AES)
Byte 1-37: BMP110
Dataset 02
Byte 38-45: MAC
Byte 46-n: Message to be
verified (all values are
binary values)

N/a Generates a session key
using the Master key
identified by key
generation and version by
using the random value
passed in.
Generates a MAC for the
message data passed in and
compare the resulting
MAC with the MAC
passed in.

Returns:

The error code WFS_ERR_PIN_FORMATINVALID is returned when:

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is not 01, 02, 03, 05, 06 or 07.

• The subcommand in Byte 0 of lpbMsg for Execute Command
WFS_CMD_PIN_SECURE_MSG_RECEIVE with protocol WFS_PIN_PROTGENAS is not 04 or 08.

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is 01 and Byte 1 is not 00 and not 01 (PIN block format is not
ISO-0 and ISO-1).

•

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is 05 and Byte 1 is not 04 (PIN block format is not ISO-4)

• The individual command data length for a subcommand is less than specified.

 The error code WFS_ERR_PIN_HSMSTATEINVALID is returned when:

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is 03 (Generate MAC) without a preceding GetMACRandom
(WFS_CMD_PIN_SECURE_MSG_SEND with subcommand 02).

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is 07 (Generate MAC) without a preceding GetMACRandom
(WFS_CMD_PIN_SECURE_MSG_SEND with subcommand 06).

The error code WFS_ERR_PIN_MACINVALID is returned when:

• The subcommand in Byte 0 of lpbMsg for Execute Command
WFS_CMD_PIN_SECURE_MSG_RECEIVE with protocol WFS_PIN_PROTGENAS is 04 (Verify
MAC) and the MACs did not match.

CWA 16926-6:2015 (E)

232

The error code WFS_ERR_PIN_KEYNOTFOUND is returned when:

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is 01 or 05 (Generate PAC) and the Service Provider does not
find a master key.

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is 02 or 06 (Get MAC Random) and the Service Provider does
not find a master key.

• The subcommand in Byte 0 of lpbMsg for Execute Command
WFS_CMD_PIN_SECURE_MSG_RECEIVE with protocol WFS_PIN_PROTGENAS is 04 or 08 (Verify
MAC) and the Service Provider does not find a key for the provided key generation and key version
values.

The error code WFS_ERR_PIN_NOPIN is returned when:

• The subcommand in Byte 0 of lpbMsg for Execute Command WFS_CMD_PIN_SECURE_MSG_SEND
with protocol WFS_PIN_PROTGENAS is 01 or 05 (Generate PAC) and no PIN or insufficient PIN-digits
have been entered.

CWA 16926-6:2020 (E)

233

8.3.10 Protocol WFS_PIN_PROTCHIPINCHG

This protocol is intended to handle messages exchanged between the PIN pad and a GeldKarte, which are all
related to the PIN change transaction.

Only Type-1-GeldKarte is supported, because the former Type-0-GeldKarte will no longer be used as it was a
dedicated Deutsche Mark electronic purse only. The Type-1-GeldKarte is used for Euro currency.

The transaction types supported are:

• PIN-Activation („PIN-Aktivierung“)

• PIN-Activation after Failure („PIN-Aktivierung nach Fehlerfall“)

• PIN-Change ("PIN-Änderung")

See the command sequence section below for the actions that Service Providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the Service Provider, the
ATR (answer to reset) data from the chip is not passed to the Service Provider.

For the complete documentation of the chip commands used for PIN-Change see [Ref. 34].

CWA 16926-6:2015 (E)

234

8.3.11 Protocol WFS_PIN_PROTPINCMP

This simple protocol is used to perform a comparison of two PINs entered into the PIN Pad. In order to be able to
compare the PINs, the first value must be temporary stored while the second value is entered. The user will be
prompted to enter the PIN twice. After the PIN has been entered for the first time, the PIN pad needs to store the
PIN value into a temporary location. After the user has entered the PIN for the second time, the PIN pad has to
compare both values.

This protocol consists of two subcommands. The first subcommand requests the PIN pad to save the PIN value
entered by the WFS_CMD_PIN_GET_PIN command for subsequent comparison. The second subcommand forces
the PIN pad to compare the PIN stored with the second value entered by the WFS_CMD_PIN_GET_PIN
command. The status of the PIN comparison is returned in the output data.

See the command sequence section below for the actions that Service Providers take for this protocol.

8.3.11.1 Use of WFS_PIN_PROTPINCMP with non-GeldKarte ZKA PIN Management

For use with the non-GeldKarte ZKA PIN compare function (see [Ref 37]) there are two more subcommands “start
PIN compare” and “end PIN compare”. These have to be called before entry of the first PIN and after querying of
the PAC to signal the end of the PIN comparison, respectively.

This is the command sequence for the non-GeldKarte transaction:

Flow Command

WFS_CMD_PIN_
wProtocol
WFS_PIN_PROT

lpbMsg in
lpbSecMsgIn

lpbMsg in
lpbSecMsgOut

Service
Provider’s
actions

PIN Compare
Start PIN comparison SECURE_MSG_SEND PINCMP Byte 0: 0x00

(Start PIN
compare)

 Prepare EPP
for PIN
comparison.
Output data
buffer length
is zero.

Let the user enter the new
PIN for the first time.

GET_PIN n/a n/a n/a PIN entry.

 SECURE_MSG_SEND PINCMP Byte 0: 0x01
(Save PIN)

 Save the PIN
value
entered for
subsequent
compare.
Output data
buffer length
is zero.

Let the user enter the new
PIN for the second time

GET_PIN n/a n/a n/a PIN entry.

 SECURE_MSG_SEND PINCMP Byte 0: 0x02
(Compare
PINs)

Byte 0: 0x00
when PIN does
not match, and
0x01 when PIN
does match.

Compare
PIN values.

Get the PAC of the new
PIN via
WFS_PIN_PROTGENAS
or
WFS_PIN_PROTISOAS
(as usual).

End PIN comparison. SECURE_MSG_SEND PINCMP Byte 0: 0xFF
(End PIN
compare)

 All PIN
buffers are
cleared.
Output data
buffer length
is zero.

CWA 16926-6:2020 (E)

235

Please note that no other PIN commands apart from WFS_CMD_PIN_GET_PIN and
WFS_CMD_PIN_SECURE_MSG_SEND as specified above are allowed inside a start / end PIN compare flow,
with the exception of creating the PAC for the old PIN. While the old PIN always has to be entered (using
WFS_CMD_PIN_GET_PIN) before the “Start PIN Compare”, the PAC for the old PIN may be created (using
WFS_CMD_PIN_SECURE_MSG_SEND with wProtocol=WFS_PIN_PROTGENAS) after the “Start PIN
Compare” if (enforced by the host protocol) the same session key SK_PAC has to be used for encrypting both the
old and the new PIN.

CWA 16926-6:2015 (E)

236

8.3.12 Protocol WFS_PIN_PROTISOPINCHG

This protocol handles ISO8583 messages between an ATM and an authorization system (AS) related to the
transactions:

• PIN-Activation („PIN-Aktivierung“)

• PIN-Activation after Failure („PIN-Aktivierung nach Fehlerfall“)

• PIN-Change ("PIN-Änderung")

The message types supported are:

• 0640 (PIN Change / PIN Activation Request)

• 0642 (Confirmation / Reversal Request for PIN Change / PIN Activation)

• 0643 (Confirmation Repeat Request for PIN Change / PIN Activation)

• 0650 (PIN Change / PIN Activation Response)

• 0652 (Confirmation / Reversal Response)

The following bitmap positions are filled by the Service Provider:

• BMP52 PAC

• BMP57 Verschlüsselungsparameter (KTerminal Generation, KTerminal Version, RNDMES and RNDPAC)

• BMP62 (EF_ID, EF_INFO, Record number of PIN, Key Version of KCard, EF_FBZ, PAC, Random value
returned by GET_CHALLENGE)

• BMP64 MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

See the command sequence section below for the actions that Service Providers take for the various messages.

For the complete documentation of the messages used for PIN-Change see [Ref. 34].

CWA 16926-6:2020 (E)

237

8.3.13 Command Sequence

The following list shows the sequence of actions an application has to take for the various GeldKarte Transactions.
Please note that this is a summary and is just intended to clarify the purpose of the chipcard-related
WFS_CMD_PIN_... commands. In no way it can replace the ZKA specifications mentioned above.

Command
WFS_CMD_PIN_

wProtocol
WFS_PIN_
PROT

lpbMsg Service Provider’s actions

Preparation for
Load/Unload

SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BÖRSE

SECURE_MSG_RECEIVE CHIPZKA Response APDU recognize type of chip
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD EF_ID

SECURE_MSG_RECEIVE CHIPZKA record EF_ID store EF_ID
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD EF_LLOG

SECURE_MSG_RECEIVE CHIPZKA record EF_LLOG
SECURE_MSG_SEND CHIPZKA Command APDU

READ_RECORD EF_BÖRSE

SECURE_MSG_RECEIVE CHIPZKA record EF_BÖRSE
SECURE_MSG_SEND CHIPZKA Command APDU

READ_RECORD
EF_BETRAG

SECURE_MSG_RECEIVE CHIPZKA record EF_BETRAG
Load against other ec-Card
SECURE_MSG_SEND CHIPZKA for type 0 chips only

Command APDU
READ RECORD EF_KEYD

SECURE_MSG_RECEIVE CHIPZKA record EF_KEYD
SECURE_MSG_SEND CHIPZKA for type 1 chips only

Command APDU

GET KEYINFO

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND1 from
Chip

store RND1

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN EINLEITEN
with Secure Msg.

fill:
-Terminal ID
-Traceno.
-RND2
-MAC

SECURE_MSG_RECEIVE CHIPZKA Response APDU store response APDU for later check of
ISOLZ message, BMP 62

SECURE_MSG_SEND ISOAZ ISO8583 message 0200
Authorization Request

Fill:
- Traceno. (BMP 11)
- PAC (BMP 52)
- RNDMES + RNDPAC (BMP 57)
- MAC (BMP 64)
check other security relevant fields

SECURE_MSG_RECEIVE ISOAZ ISO8583 message 0210
Authorization Response

check MAC and other security relevant
fields

SECURE_MSG_SEND ISOLZ ISO8583 message 0200
Ladeanfrage

Fill:
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)
check other security relevant fields.

SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0210
Ladeantwort

check MAC and other security relevant
fields, store BMP62 for later use in
LADEN command.

SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE

CWA 16926-6:2015 (E)

238

Command
WFS_CMD_PIN_

wProtocol
WFS_PIN_
PROT

lpbMsg Service Provider’s actions

SECURE_MSG_RECEIVE CHIPZKA Random number RND3 from
chip

store RND3

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN with Secure Msg.

provide complete command from
BMP62 of ISOLZ response , compute
command MAC

SECURE_MSG_RECEIVE CHIPZKA Response APDU check response MAC
GET_JOURNAL ISOLZ Vendor specific
GET_JOURNAL ISOAZ Vendor specific
Reversal of a Load against
other ec-Card

SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BÖRSE

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND

CHIPZKA Command APDU
GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND5 from
chip

store RND5

SECURE_MSG_SEND

CHIPZKA Command APDU
LADEN EINLEITEN
with Secure Msg.

Fill:
-Terminal ID
-Traceno.
-RND6
-Keyno. KGKLT
-MAC

SECURE_MSG_RECEIVE CHIPZKA Response APDU store response APDU for later check of
ISOLZ message, BMP 62

SECURE_MSG_SEND ISOAZ ISO8583 message 0400
Storno

Fill:
- Traceno. (BMP 11)
- PAC (BMP 52)
- RNDMES + RNDPAC (BMP 57)
- MAC (BMP 64)
check other security relevant fields

SECURE_MSG_RECEIVE ISOAZ ISO8583 message 0410
Storno Response

check MAC and other security relevant
fields.

SECURE_MSG_SEND ISOLZ ISO8583 message 0400
Storno

Fill:
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)
check other security relevant fields.

SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0410
Storno Response

check MAC and other security relevant
fields, store BMP62 for later use in
LADEN command.

SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND7 from
chip

store RND7

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN with Secure Msg.

provide complete command from
BMP62 of ISOLZ response , compute
command MAC

SECURE_MSG_RECEIVE CHIPZKA Response APDU check response MAC
GET_JOURNAL ISOLZ Vendor specific
GET_JOURNAL ISOAZ Vendor specific

PIN Verification Type 0

SECURE_MSG_SEND CHIPZKA Command APDU
GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND0 from
chip

store RND0

SECURE_MSG_SEND CHIPZKA Command APDU
EXTERNAL
AUTHENTICATE

fill
-Keyno. KINFO
-ENCRND

SECURE_MSG_RECEIVE CHIPZKA Response APDU

CWA 16926-6:2020 (E)

239

SECURE_MSG_SEND CHIPZKA Command APDU
PUT DATA

fill RND1

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

READ RECORD
EF_INFO
with Secure Messaging

SECURE_MSG_RECEIVE CHIPZKA record EF_INFO check MAC
SECURE_MSG_SEND CHIPZKA Command APDU

GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND2 from
chip

store RND2

SECURE_MSG_SEND CHIPZKA Command APDU
VERIFY

provide complete command APDU

SECURE_MSG_RECEIVE CHIPZKA Response APDU
PIN Verification Type 1
SECURE_MSG_SEND CHIPZKA Command APDU

GET KEYINFO

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA Command APDU

GET CHALLENGE

SECURE_MSG_RECEIVE CHIPZKA Random number RND0 from
chip

store RND0

SECURE_MSG_SEND CHIPZKA Command APDU
MUTUAL AUTHENTICATE

fill ENC0

SECURE_MSG_RECEIVE CHIPZKA Response APDU check ENC1
SECURE_MSG_SEND CHIPZKA Command APDU

VERIFY
provide complete command APDU

SECURE_MSG_RECEIVE CHIPZKA Response APDU check MAC
„Laden vom Kartenkonto“
(both types)

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN EINLEITEN

fill
-Terminal ID
-Trace No.

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND ISOLZ ISO8583 message 0200

Ladeanfrage
fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)
check other security relevant fields.

SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0210
Ladeantwort

check MAC and other security relevant
fields.

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN

SECURE_MSG_RECEIVE CHIPZKA Response APDU

GET_JOURNAL ISOLZ Vendor specific

Reversal of a „Laden vom
Kartenkonto“

SECURE_MSG_SEND CHIPZKA Command APDU
SELECT FILE DF_BÖRSE

SECURE_MSG_RECEIVE CHIPZKA Response APDU

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN EINLEITEN

fill
-Terminal ID
-Traceno.

SECURE_MSG_RECEIVE CHIPZKA Response APDU

SECURE_MSG_SEND ISOLZ ISO8583 message 0400
Storno

fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)
check other security relevant fields.

CWA 16926-6:2015 (E)

240

SECURE_MSG_RECEIVE ISOLZ ISO8583 message 0410
Storno Response

check MAC and other security relevant
fields

SECURE_MSG_SEND CHIPZKA Command APDU
LADEN

SECURE_MSG_RECEIVE CHIPZKA Response APDU

GET_JOURNAL ISOLZ Vendor specific
Unload
SECURE_MSG_SEND CHIPZKA ENTLADEN EINLEITEN fill

-Terminal ID
-Trace No.

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND ISOLZ ISO8583 message

Entladeanfrage 0200
fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)
check other security relevant fields.

SECURE_MSG_RECEIVE ISOLZ ISO8583 message
Entladeantwort 0210

check MAC and other security relevant
fields

SECURE_MSG_SEND CHIPZKA ENTLADEN
SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND CHIPZKA ENTLADEN EINLEITEN fill

-Terminal ID
-Trace No.

SECURE_MSG_RECEIVE CHIPZKA Response APDU
SECURE_MSG_SEND ISOLZ ISO8583 message

Entladequittung 0202
fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)
check other security relevant fields.

SECURE_MSG_RECEIVE ISOLZ ISO8583 message
Entladebestätigung 0212

check MAC and other security relevant
fields

SECURE_MSG_SEND CHIPZKA Command APDU
ENTLADEN

SECURE_MSG_RECEIVE CHIPZKA Response APDU
GET_JOURNAL ISOLZ Vendor specific

Repeated Messages
(Stornowiederholung /
Entladequittungswiederhol
ung)

SECURE_MSG_SEND ISOLZ ISO8583 message
Stornowiederholung 0401 or
Entladequittungswiederholung
0203

fill
- Traceno. (BMP 11)
- RNDMES (BMP 57)
- MAC (BMP 64)
check other security relevant fields.

SECURE_MSG_RECEIVE ISOLZ ISO8583 message
Stornoantwort 410 or
Entladebestätigung 0212

check MAC and other security relevant
fields

GET_JOURNAL ISOLZ Vendor specific

Command
WFS_CMD_PIN_

wProtocol
WFS_PIN_P
ROT

lpbMsg Service Provider’s actions

Preparation for PIN
Change

SECURE_MSG_SEND CHIPPINCHG Command APDU
READ RECORD EF_ID

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
Record EF_ID

Store EF_ID
Will be inserted into BMP62 of a PIN
Change request

SECURE_MSG_SEND CHIPPINCHG Command APDU
GET CHALLENGE

CWA 16926-6:2020 (E)

241

Command
WFS_CMD_PIN_

wProtocol
WFS_PIN_P
ROT

lpbMsg Service Provider’s actions

SECURE_MSG_RECEIVE CHIPPINCHG Random number RND0 from
Chip

Store RND0

SECURE_MSG_SEND CHIPPINCHG Command APDU
READ RECORD EF_INFO

Fill RND1

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU Record
EF_INFO

Check MAC, Store EF_INO
Will be inserted into BMP62 of a PIN
Change request

SECURE_MSG_SEND CHIPPINCHG Command APDU
GET KEYINFO

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
Version of KCard

Store version byte
Will be inserted into BMP62 of a PIN
Change request

SECURE_MSG_SEND CHIPPINCHG Command APDU
SEARCH RECORD ‘01’ of
EF_PWDD

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU Store record number
Will be inserted into BMP62 of a PIN
Change request

SECURE_MSG_SEND CHIPPINCHG Command APDU
READ RECORD EF_FBZ

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
Initial value FBZ
Actual value FBZ

PIN Verification
SECURE_MSG_SEND CHIPPINCHG Command APDU

GET KEYINFO

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
SECURE_MSG_SEND CHIPPINCHG Command APDU

GET CHALLENGE

SECURE_MSG_RECEIVE CHIPPINCHG Random number RND0 from
chip

Store RND0

SECURE_MSG_SEND CHIPPINCHG Command APDU
MUTUAL
AUTHENTICATE

Fill ENC0

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU Check ENC1
SECURE_MSG_SEND CHIPPINCHG Command APDU

VERIFY
Provide complete command APDU

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU Check MAC
Create PAC for old PIN

PIN Change
Let the user enter the PIN for
the first time, by invoking the
command
WFS_CMD_PIN_GET_PIN

SECURE_MSG_SEND HSMPINCMP Byte 0: 0x01
(Save PIN)

Save the PIN value entered for
subsequent compare. Output data
buffer length is zero.

Let the user enter the PIN for
the second time, by invoking
the command
WFS_CMD_PIN_GET_PIN

SECURE_MSG_SEND HSMPINCMP Byte 0: 0x02
(Compare PINs)

Compare PIN values.
Returns Byte 0: as 0x00 when PIN
does not match, and 0x01 when PIN
does match.
Create PAC for new PIN if values
match

SECURE_MSG_SEND CHIPPINCHG Command APDU
MANAGE SECURITY
ENVIRONMENT

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
SECURE_MSG_SEND CHIPPINCHG Command APDU

GET CHALLENGE

CWA 16926-6:2015 (E)

242

Command
WFS_CMD_PIN_

wProtocol
WFS_PIN_P
ROT

lpbMsg Service Provider’s actions

SECURE_MSG_RECEIVE CHIPPINCHG Random number RND0 from
Chip

Store RND0
Will be inserted into BMP62 of a PIN
Change request

SECURE_MSG_SEND ISOPINCHG ISO8583 Message 0640 Fill
- PAC old PIN (BMP52)
- KTerminal generation + KTerminal version
+ RNDMES + RNDPAC (BMP57)
- Chip Data (BMP62) with PAC of
new PIN
- MAC (BMP64)

SECURE_MSG_RECEIVE ISOPINCHG ISO8583 message 0650 Check MAC
SECURE_MSG_SEND CHIPPINCHG Command APDU

from BMP62

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
PIN Change Confirmation/
Repeated Confirmation

SECURE_MSG_SEND ISOPINCHG ISO8583
message 0642 or 0643
BMP25 = 00

Fill
- KTerminal generation + KTerminal version
+ RNDMES (BMP57)
- Chip Data (BMP62) with PAC of
new PIN
- MAC (BMP64)

SECURE_MSG_RECEIVE ISOPINCHG ISO8583 message 0652 Check MAC
PIN Change Reversal/
Repeated Reversal

SECURE_MSG_SEND ISOPINCHG ISO8583
message 0642 or 0643
BMP25 ≠ 00

Fill
- KTerminal generation + KTerminal version
+ RNDMES (BMP57)
- Chip Data (BMP62) with PAC of old
PIN
- MAC (BMP64)

SECURE_MSG_RECEIVE ISOPINCHG ISO8583 message 0652 Check MAC

PIN Activation after failure
SECURE_MSG_SEND ISOPINCHG ISO8583

message 0640
Fill
- PAC entered PIN (BMP52)
- KTerminal generation + KTerminal version
+ RNDMES + RNDPAC (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)

SECURE_MSG_RECEIVE ISOPINCHG ISO8583 message 0650 Check MAC

PIN Activation
SECURE_MSG_SEND CHIPPINCHG Command APDU

MANAGE SECURITY
ENVIRONMENT

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
SECURE_MSG_SEND CHIPPINCHG Command APDU

GET CHALLENGE

SECURE_MSG_RECEIVE CHIPPINCHG Random number RND0 from
Chip

Store RND0
Will be inserted into BMP62 of a PIN
Activation request

SECURE_MSG_SEND ISOPINCHG ISO8583 Message 0640 Fill
- PAC entered PIN (BMP52)
- KTerminal generation + KTerminal version
+ RNDMES + RNDPAC (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)

SECURE_MSG_RECEIVE ISOPINCHG ISO8583 message 0650 Check MAC

CWA 16926-6:2020 (E)

243

SECURE_MSG_SEND CHIPPINCHG Command APDU
from BMP62

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
PIN Activation
Confirmation/ Repeated
Confirmation

SECURE_MSG_SEND CHIPPINCHG Command APDU
MANAGE SECURITY
ENVIRONMENT

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU
SECURE_MSG_SEND CHIPPINCHG Command APDU

GET CHALLENGE

SECURE_MSG_RECEIVE CHIPPINCHG Random number RND0 from
Chip

Store RND0
Will be inserted into BMP62 of a PIN
Activation confirmation

SECURE_MSG_SEND ISOPINCHG ISO8583
message 0642 or 0643
BMP25 = 00

Fill
- KTerminal generation + KTerminal version
+ RNDMES (BMP57)
- Chip Data (BMP62) with PAC of
entered PIN
- MAC (BMP64)

SECURE_MSG_RECEIVE ISOPINCHG ISO8583 message 0652 Check MAC
SECURE_MSG_SEND CHIPPINCHG Command APDU

from BMP62

SECURE_MSG_RECEIVE CHIPPINCHG Response APDU

CWA 16926-6:2015 (E)

244

8.4 EMV Support

EMV support by this specification consists in the ability of importing Certification Authority and Chip Card Public
Keys, creating the PIN blocks for offline PIN verification and verifying static and dynamic data. This section is
used to further explain concepts and functionality that needs further clarification.

The PIN service is able to manage the EMV chip card regarding the card authentication and the RSA local PIN
verification. Two steps are mandatory in order to reach these two functions: The loading of the keys which come
from the Certification Authorities or from the card itself, and the EMV PIN block management.

The Service Provider is responsible for all key validation during the import process. The application is responsible
for management of the key lifetime and expiry after the key is successfully imported.

8.4.1 Keys loading

The final goal of an application is to retrieve the keys located on card to perform the operations of authentication or
local PIN check (RSA encrypted). These keys are provided by the card using EMV certificates and can be retrieved
using a Public Key provided by a Certification Authority. The application should first load the keys issued by the
Certification Authority. At transaction time the application will use these keys to load the keys that the application
has retrieved from the chip card.

Certification Authority keys
These keys are provided in the following formats:

• Plain text.

• Plain Text with EMV 2000 Verification Data (See [Ref. 4] under the reference section for this document).

• EPI CA (or self signed) format as specified in the Europay International, EPI CA Module Technical –
Interface specification Version 1.4 (See [Ref. 5] under the reference section for this document).

• PKCSV1_5 encrypted (as used by GIECB in France) (See [Ref. 15] under the reference section for this
document).

EPI CA format
The following table corresponds to table 4 of the Europay International, EPI CA Module Technical – Interface
specification Version 1.4 (See [Ref. 5]) and identifies the Europay Public Key (self-certified) and the associated
data:

Field name Length Description Format
ID of Certificate Subject 5 RID for Europay Binary
Europay public key Index 1 Europay public key Index Binary
Subject public key Algorithm
Indicator

1 Algorithm to be used with the Europay public
key Index, set to 0x01

Binary

Subject public key Length 1 Length of the Europay public key Modulus
(equal to Nca)

Binary

Subject public key Exponent
Length

1 Length of the Europay public key Exponent Binary

Leftmost Digits of Subject public
key

Nca-37 Nca-37 most significant bytes of the Europay
public key Modulus

Binary

Subject public key Remainder 37 37 least significant bytes of the Europay public
key Modulus

Binary

Subject public key Exponent 1 Exponent for Europay public key Binary
Subject public key Certificate Nca Output of signature algorithm Binary

Table 1

CWA 16926-6:2020 (E)

245

The following table corresponds to table 13 of the Europay International, EPI CA Module Technical – Interface
specification Version 1.4 and identifies the Europay Public Key Hash code and associated data.

Field name Length Description Format
ID of Certificate Subject 5 RID for Europay Binary
Europay public key Index 1 Europay public key Index Binary
Subject public key Algorithm
Indicator

1 Algorithm to be used with the Europay public
key Index, set to 0x01

Binary

Certification Authority public key
Check Sum

20 Hash-code for Europay public key Binary

Table 2

Table 2 corresponds to table 13 of the Europay International, EPI CA Module Technical – Interface specification
Version 1.4 (See [Ref. 5]).

Chip card keys
These keys are provided as EMV certificates which come from the chip card in a multiple layer structure (issuer
key first, then the ICC keys). Two kinds of algorithm are used with these certificates in order to retrieve the keys:
One for the issuer key and the other for the ICC keys (ICC Public Key and ICC PIN encipherment key). The
associated data with these algorithms – The PAN (Primary Account Number) and the SDA (Static Data to be
Authenticated) - come also from the chip card.

CWA 16926-6:2015 (E)

246

8.4.2 PIN Block Management

The PIN block management is done through the command WFS_CMD_PIN_GET_PINBLOCK. A new format
WFS_PIN_FORMEMV has been added to indicate to the PIN service that the PIN block must follow the
requirements of the EMVCo, Book2 – Security & Key management Version 4.0 document The parameter
lpsCustomerData is used in this case to transfer to the PIN service the challenge number coming from the chip card.
The final encryption must be done using a RSA Public Key. Please note that the application is responsible to send
the PIN block to the chip card inside the right APDU.

CWA 16926-6:2020 (E)

247

8.4.3 SHA-1 Digest

The SHA-1 Digest is a hash algorithm used by EMV in validating ICC static and dynamic data item. The SHA-1
Digest is supported through the WFS_CMD_PIN_DIGEST command. The application will pass the data to be
hashed to the Service Provider. Once the encryptor completes the SHA-1 hash code, the Service Provider will
return the 20-byte hash value back to the application.

CWA 16926-6:2015 (E)

248

8.5 French Cartes Bancaires

“Groupement des Cartes Bancaires” from France has specified a cryptographic architecture for ATM networks.
See the document [Ref. 15] for details.

The XFS command WFS_CMD_PIN_ENC_IO with the protocol WFS_PIN_ENC_PROT_GIECB is used for:

• ATM initialization

• Renewal of ATM master key

• Renewal of HOST master key

• Generation and loading of key transport key

Keys loaded or generated with WFS_CMD_PIN_ENC_IO get names like any other keys in a XFS PIN service.
WFS_INF_PIN_KEY_DETAIL[_EX] shows the key with this name and the name may be used with
WFS_CMD_PIN_IMPORT_KEY[_EX] to delete a key.

8.5.1 Data Structure for WFS_CMD_PIN_ENC_IO

Data will be transferred as tag-length-value (TLV) structure, encoded according to the distinguished encoding rules
(DER) defined in [Ref. 16].

The following is a list of top level tags defined for the use with WFS_PIN_ENC_PROT_GIECB. All these tags
have the APPLICATION class, therefore the Identifier Octets are (binary):

• 0 1 0 n n n n n - for the primitive types

• 0 1 1 n n n n n - for the constructed types

Tag Number Primitive /

Constructed
Identifier

Octet
Contents

0 P 0x40 Protocol Version
The INTEGER value zero for this version of the
protocol

1 P 0x41 Interchange Code
An ASCII string holding one of the interchange
codes defined in [Ref. 15], e.g. “HRN-H1”

2 C 0x62 Interchange Data
The data items as defined by [Ref.15], see table
below for details

3 P 0x43 Key Name
An ASCII string holding the name for the key being
loaded or generated.

The Interchange Data (Tag 2) is constructed from data items where tag numbers of the sub-tags from 1 to 23
correspond to the data item numbers (“No donnée”) as defined in section 3.1 of [Ref. 15]. Some of the data items
consist of data elements, for these the constructed encoding will be used. For data items with no data elements the
primitive encoding will be used.

All Tags have the CONTEXT class, therefore the Identifier Octets are (binary):

• 1 0 0 n n n n n - for the primitive types

• 1 0 1 n n n n n - for the constructed types

CWA 16926-6:2020 (E)

249

Tag
(=Data Item

No)

Primitive /
Constructed

Identifier
Octet

Data Item Label

1 C 0xA1 IdKG

2 C 0xA2 KTK-encrypted

3 C 0xA3 KGp

4 C 0xA4 KDp

5 C 0xA5 SnSCD

6 P 0x86 Rand

7 P 0x87 HOST authentication

8 P 0x88 KDp signature

9 P 0x89 KGp signature

10 P 0x8A KTK signature

11 P 0x8B KT-encrypted

12 P 0x8C Ksc-encrypted

13 P 0x8D PIN cryptogram

14 P 0x8E Seal

15 P 0x8F Thumbprint of KDp

16 P 0x90 Thumbprint of KGp

17 C 0xB1 IdKD

18 C 0xB2 IdKTK

19 C 0xB3 IdKT

20 C 0xB4 IdKSC

21 P 0x95 Manufacturer

22 C 0xB6 SCD type

23 C 0xB7 Firmware version

Inside the constructed data items, primitive encoding is used for the data elements, all tags having CONTEXT class
with tag numbers corresponding to the data element numbers (“No d’élément de donnée”) as defined in section 3.1
of [Ref. 15].

Example:
The example shows the DER encoding of the input for a WFS_CMD_PIN_ENCIO command, for the interchange
“GIN-H5”. All data except the 128 byte content of data item 7 is shown in hexadecimal (0x omitted for the sake of
readability).
40 01 00 (tag / length / value for Protocol Version 0)
41 06 47 49 4E 2D 48 35 (tag / length / value for Interchange Code “GIN-H5”)
62 81 B5 (tag / length for Interchange Data)
 A1 14 (tag / length for data item 1)
 81 01 00 (data element 1)
 82 0C 00 00 00 00 00 00 00 00 00 00 00 00 (data element 2)
 83 01 00 (data element 3)
 A5 10 (tag / length for data item 5)
 81 03 00 00 00 (data element 1)
 82 09 00 00 00 00 00 00 00 00 00 (data element 2)
 86 08 00 00 00 00 00 00 00 00 (tag / length / value for data item 6)
 87 81 80 <128 bytes> (tag / length / value for data item 7)
43 05 4D 59 4B 45 59 (tag / length / value for Key Name “MYKEY”)

CWA 16926-6:2015 (E)

250

8.5.2 Command Sequence

The following list shows the sequence of actions an application has to take for the various Cartes Bancaires
interchanges.

• GIN (ATM initialization)

Action Interchange
Code

Key Name Input
Data Items

Output
Data Items

Thumbprint supplied by host via external channel (GIN-H1)

WFS_CMD_PIN_ENCIO GIN-G2 21,22,23

Host Communication (GIN-G2 / GIN-H3)

WFS_CMD_PIN_ENCIO GIN-H3 Key Name for KG 3 16

WFS_CMD_PIN_ENCIO GIN-G4 5,6,1

Host Communication (GIN-G4 / GIN-H5)

WFS_CMD_PIN_ENCIO GIN-H5 Key Name for KD 5,6,1,7

WFS_CMD_PIN_ENCIO GIN-G6 5,4,8

Host Communication (GIN-G6)

WFS_CMD_PIN_ENCIO GIN-G7 15

Send thumbprint to host via external channel (GIN-G7)

• GRN (Renewal of ATM Master Key)

Action Interchange
Code

Key Name Input
Data Items

Output
Data Items

WFS_CMD_PIN_ENCIO GRN-G1 5,6,1

Host Communication (GRN-G1 / GRN-H2)

WFS_CMD_PIN_ENCIO GRN-H2 Key Name for
KD

5,6,1,7

WFS_CMD_PIN_ENCIO GRN-G3 5,4,8,17

Host Communication (GRN-G3)

WFS_CMD_PIN_ENCIO GRN-C
or

GRN-R

 17

The Interchange codes “GRN-C” to commit the transaction resp. “GRN-R” to roll back the transactions are an
addition to those defined in [Ref. 15].

• HRN (Renewal of HOST Master Key)

Action Interchange

Code
Key Name Input

Data Items
Output

Data Items

Host Communication (HRN-H1)

WFS_CMD_PIN_ENCIO HRN-H1 Key Name for
KG

3,9,1

CWA 16926-6:2020 (E)

251

• DKT (Generation and Loading of KTK)

Action Interchange
Code

Key Name Input
Data Items

Output
Data Items

WFS_CMD_PIN_ENCIO

DKT-G1 5,6

Host Communication (DKT-G1 / DKT-H2)

WFS_CMD_PIN_ENCIO

DKT-H2 Key Name for
KTK

5,6,2,10,1,17

CWA 16926-6:2015 (E)

252

8.6 Secure Key Entry

This section provides additional information to describe how encryption keys are entered securely through the PIN
pad keyboard and also provides examples of possible keyboard layouts.

8.6.1 Keyboard Layout

The following sections describe what is returned within the WFS_INF_PIN_SECUREKEY_DETAIL output
parameters to describe the physical keyboard layout. These descriptions are purely examples to help understand the
usage of the parameters they do not indicate a specific layout per Key Entry Mode.

In the following section all references to parameters relate to the output fields of the
WFS_INF_PIN_SECUREKEY_DETAIL command.

When fwKeyEntryMode represents a regular shaped PIN pad (WFS_PIN_SECUREKEY_REG_UNIQUE or
WFS_PIN_SECUREKEY_REG_SHIFT) then lppHexKeys must contain one entry for each physical key on the PIN
pad (i.e. the product of wRows by wColumns). On a regular shaped PIN pad the application can choose to ignore the
position and size data and just use the wRows and wColumns parameters to define the layout. However, a Service
Provider must return the position and size data for each key.

8.6.1.1 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_UNIQUE

When fwKeyEntryMode is WFS_PIN_SECUREKEY_REG_UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the lpFuncKeyDetail parameter. Any positions on the PIN pad that are not used must be defined as a
WFS_PIN_FK_UNUSED in the ulFK and ulShiftFK field of the lppHexKeys structure.

1 2 3 Clear (A)
4 5 6 Cancel (B)
7 8 9 Enter (C)
(D) 0 (E) (F)

In the above example, where all keys are the same size and the hex digits are located as shown the lppHexKeys will
contain the entries in the array as defined in the following table.

Index usXPos usYPos usXSize usYSize ulFK ulShiftFK
0 0 0 250 250 FK_1 FK_UNUSED
1 250 0 250 250 FK_2 FK_UNUSED
2 500 0 250 250 FK_3 FK_UNUSED
3 750 0 250 250 FK_A FK_UNUSED
4 0 250 250 250 FK_4 FK_UNUSED
5 250 250 250 250 FK_5 FK_UNUSED
6 500 250 250 250 FK_6 FK_UNUSED
7 750 250 250 250 FK_B FK_UNUSED
8 0 500 250 250 FK_7 FK_UNUSED
9 250 500 250 250 FK_8 FK_UNUSED
10 500 500 250 250 FK_9 FK_UNUSED
11 750 500 250 250 FK_C FK_UNUSED
12 0 750 250 250 FK_D FK_UNUSED
13 250 750 250 250 FK_0 FK_UNUSED
14 500 750 250 250 FK_E FK_UNUSED
15 750 750 250 250 FK_F FK_UNUSED

8.6.1.2 fwKeyEntryMode == WFS_PIN_SECUREKEY_REG_SHIFT

When fwKeyEntryMode is WFS_PIN_SECUREKEY_REG_SHIFT then the values in the array report which
physical keys are associated with the function keys 0-9, A-F, and the shift key as defined in the lpFuncKeyDetail
parameter. Other function keys as defined by the lpFuncKeyDetail parameter that can be enabled must also be
reported. Any positions on the PIN pad that are not used must be defined as a WFS_PIN_FK_UNUSED in the ulFK
and ulShiftFK field of the lppHexKeys structure. Digits 0 to 9 are accessed through the numeric keys as usual.
Digits A to F are accessed by using the shift key in combination with another function key, e.g. shift-0 (zero) is hex
digit A.

CWA 16926-6:2020 (E)

253

1 (B) 2 (C) 3 (D) Clear
4 (E) 5 (F) 6 Cancel
7 8 9 Enter
SHIFT 0 (A)

In the above example, where all keys are the same size and the hex digits 'A' to 'F' are accessed through shift '0' to
'5', then the lppHexKeys will contain the entries in the array as defined in the following table.

Index usXPos usYPos usXSiz

e
usYSize ulFK ulShiftFK

0 0 0 250 250 FK_1 FK_B
1 250 0 250 250 FK_2 FK_C
2 500 0 250 250 FK_3 FK_D
3 750 0 250 250 FK_CLEAR FK_UNUSED
4 0 250 250 250 FK_4 FK_E
5 250 250 250 250 FK_5 FK_F
6 500 250 250 250 FK_6 FK_UNUSED
7 750 250 250 250 FK_CANCEL FK_UNUSED
8 0 500 250 250 FK_7 FK_UNUSED
9 250 500 250 250 FK_8 FK_UNUSED
10 500 500 250 250 FK_9 FK_UNUSED
11 750 500 250 250 FK_ENTER FK_UNUSED
12 0 750 250 250 FK_SHIFT FK_UNUSED
13 250 750 250 250 FK_0 FK_A
14 500 750 250 250 FK_UNUSED FK_UNUSED
15 750 750 250 250 FK_UNUSED FK_UNUSED

8.6.1.3 fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_SHIFT

When fwKeyEntryMode represents an irregular shaped PIN pad the wRows and wColumns parameters define the
ratio of the width to height, i.e. square if the parameters are the same or rectangular if wColumns is larger than
wRows, etc. A Service Provider must return the position and size data for each key reported.

When fwKeyEntryMode is WFS_PIN_SECUREKEY_IRREG_SHIFT then the values in the array must be the
function keys codes for 0-9 and the shift key as defined in the lpFuncKeyDetail parameter. Other function keys as
defined by the lpFuncKeyDetail parameter that can be enabled must also be reported. Any positions on the PIN pad
that are not used must be defined as a WFS_PIN_FK_UNUSED in the ulFK and ulShiftFK field of the lppHexKeys
structure. Digits 0 to 9 are accessed through the numeric keys as usual. Digits A - F are accessed by using the shift
key in combination with another function key, e.g. shift-0(zero) is hex digit A.

1 (B) 2 (C) 3 (D) Clear
4 (E) 5 (F) 6 Cancel
7 8 9 Enter
 0 (A)

SHIFT

In the above example, where the hex digits 'A' to 'F' are accessed through shift '0' to ‘5’, wColumns will be 4,
wRows will be 5 and the lppHexKeys will contain the entries in the array as defined in the following table.

Index usXPos usYPos usXSize usYSize ulFK ulShiftFK
0 0 0 250 200 FK_1 FK_B
1 250 0 250 200 FK_2 FK_C
2 500 0 250 200 FK_3 FK_D
3 750 0 250 200 FK_CLEAR FK_UNUSED
4 0 200 250 200 FK_4 FK_E
5 250 200 250 200 FK_5 FK_F
6 500 200 250 200 FK_6 FK_UNUSED
7 750 200 250 200 FK_CANCEL FK_UNUSED
8 0 400 250 200 FK_7 FK_UNUSED
9 250 400 250 200 FK_8 FK_UNUSED
10 500 400 250 200 FK_9 FK_UNUSED

CWA 16926-6:2015 (E)

254

Index usXPos usYPos usXSize usYSize ulFK ulShiftFK
11 750 400 250 200 FK_ENTER FK_UNUSED
12 0 600 250 200 FK_UNUSED FK_UNUSED
13 250 600 250 200 FK_0 FK_A
14 500 600 250 200 FK_UNUSED FK_UNUSED
15 750 600 250 200 FK_UNUSED FK_UNUSED
16 0 800 1000 200 FK_SHIFT FK_UNUSED

8.6.1.4 fwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_UNIQUE

When fwKeyEntryMode is WFS_PIN_SECUREKEY_REG_UNIQUE then the values in the array report which
physical keys are associated with the function keys 0-9, A-F and any other function keys that can be enabled as
defined in the lpFuncKeyDetail parameter. The wRows and wColumns parameters define the ratio of the width to
height, i.e. square if the parameters are the same or rectangular if wColumns is larger than wRows, etc. A Service
Provider must return the position and size data for each key.

In the above example, where an alphanumeric keyboard supports secure key entry and the hex digits are located as
shown, the lppHexKeys will contain the entries in the array as defined in the following table. All the hex digits and
function keys that can be enabled must be included in the array; in addition any keys that would help an application
display an image of the keyboard can be included. In this example only the PIN pad digits (the keys on the right)
and the unique hex digits are reported. Note that the position data in this example may not be 100% accurate as the
diagram is not to scale.

Index usXPos usYPos usXSize usYSize ulFK ulShiftFK
0 780 18 40 180 FK_1 FK_UNUSED
1 830 18 40 180 FK_2 FK_UNUSED
2 880 18 40 180 FK_3 FK_UNUSED
3 930 18 60 180 FK_CANCEL FK_UNUSED
4 780 216 40 180 FK_4 FK_UNUSED
5 830 216 40 180 FK_5 FK_UNUSED
6 880 216 40 180 FK_6 FK_UNUSED
7 930 216 60 180 FK_ENTER FK_UNUSED
8 780 414 40 180 FK_7 FK_UNUSED
9 830 414 40 180 FK_8 FK_UNUSED

1 Q W E R T Y P O I U

A S

Z

L K J H G F D

B V C X , . M N

Space

(D) (E) (F) (C)

2

4

3

5 6

7 8 9

 0

0

Cancel

Enter

Clear

20

60

70

0

200
220

20

990

930

920

880

(A) (B)

780

CWA 16926-6:2020 (E)

255

Index usXPos usYPos usXSize usYSize ulFK ulShiftFK
10 880 414 40 180 FK_9 FK_UNUSED
11 930 414 60 180 FK_CLEAR FK_UNUSED
12 780 612 40 180 FK_UNUSED FK_UNUSED
13 830 612 40 180 FK_0 FK_UNUSED
14 880 612 40 180 FK_UNUSED FK_UNUSED
15 930 612 60 180 FK_UNUSED FK_UNUSED
16 680 810 40 180 FK_A FK_UNUSED
17 730 810 40 180 FK_B FK_UNUSED
18 780 810 40 180 FK_C FK_UNUSED
19 830 810 40 180 FK_D FK_UNUSED
20 880 810 40 180 FK_E FK_UNUSED
21 930 810 60 180 FK_F FK_UNUSED

CWA 16926-6:2015 (E)

256

8.6.2 Command Usage

This section provides an example of the sequence of commands required to enter an encryption key securely. In the
following sequence, the application retrieves the keyboard secure key entry mode and associated keyboard layout
and displays an image of the keyboard for the user. It then gets the first key part, verifies the KCV for the key part
and stores it. The sequence is repeated for the second key part and then finally the key part is activated.

App
PIN

WFS_INF_PIN_SECUREKEY_DETAIL

Display Keyboard Layout

WFS_CMD_PIN_SECUREKEY_ENTRY (Part 1)
[part 1 master encryption key values are manually entered on the PinPad]

Verify KCV
[verify part 1 master key KCV as returned with the output data of the
WFS_CMD_PIN_SECUREKEY_ENTRY command]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey”,“”,NULL,NULL,WFS_PIN_USEKEYENCKEY |
WFS_PIN_USESECURECONSTRUCT)
[part 1 master encryption key values loaded with the secure key entry
command]

WFS_CMD_PIN_SECUREKEY_ENTRY
[part 2 master encryption key values are manually entered on the PinPad]

Verify KCV
[verify part 2 master key KCV as returned with the output data of the
WFS_CMD_PIN_SECUREKEY_ENTRY command]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey”,“”,NULL,NULL, WFS_PIN_USEKEYENCKEY |
WFS_PIN_USESECURECONSTRUCT)
[part 2 master encryption key values loaded with the secure key entry
command]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey”,“”,NULL,NULL,WFS_PIN_USEKEYENCKEY)
[activates the full master encryption key]

Verify KCV
[verify full master key KCV as returned with the output data of the
WFS_CMD_PIN_SECUREKEY_ENTRY command]

CWA 16926-6:2020 (E)

257

8.7 WFS_PIN_USERESTRICTEDKEYENCKEY key usage

This section provides additional information to describe the WFS_PIN_USERESTRICTEDKEYENCKEY key
usage.

8.7.1 Command Usage

This sample command flow sequence shows how encryption keys can be derived/not derived if the master key has a
restricted use. NOTE: In this example the master encryption key is loaded using the secure key entry command
instead of using RKL commands. The loading with RKL works in the same way.

Secure key entry based restricted master encryption key loading with
WFS_PIN_USERESTRICTEDKEYENCKEY flag:

App PIN WFS_CMD_PIN_SECUREKEY_ENTRY
[part 1 crypt master encryption key values are manually entered on the PinPad]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey1”,“”,NULL,NULL,WFS_PIN_USERESTRICTEDKEYENCKEY |
WFS_PIN_USECRYPT | WFS_PIN_USESECURECONSTRUCT)
[part 1 crypt master encryption key values loaded with the secure key entry command]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey1”,“”,NULL,NULL,WFS_PIN_USERESTRICTEDKEYENCKEY |
WFS_PIN_USECRYPT | WFS_PIN_USESECURECONSTRUCT)
[part 2 crypt master encryption key values loaded with the secure key entry command]

WFS_CMD_PIN_SECUREKEY_ENTRY
[part 2 crypt master encryption key values are manually entered on the PinPad]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey1”,“”,NULL,NULL,WFS_PIN_USERESTRICTEDKEYENCKEY |
WFS_PIN_USECRYPT)
[activates the previously loaded and XORed crypt master encryption key parts]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey2”,“”,NULL,NULL,WFS_PIN_USERESTRICTEDKEYENCKEY |
WFS_PIN_USEFUNCTION)
[activates the full function master encryption key]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey2”,“”,NULL,NULL,WFS_PIN_USERESTRICTEDKEYENCKEY |
WFS_PIN_USEFUNCTION | WFS_PIN_USESECURECONSTRUCT)
[part 2 function master encryption key values loaded with the secure key entry command]

WFS_CMD_PIN_SECUREKEY_ENTRY
[part 1 function master encryption key values are manually entered on the PinPad]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey2”,“”,NULL,NULL,WFS_PIN_USERESTRICTEDKEYENCKEY |
WFS_PIN_USEFUNCTION | WFS_PIN_USESECURECONSTRUCT)
[part 1 function master encryption key values loaded with the secure key entry command]

WFS_CMD_PIN_SECUREKEY_ENTRY
[part 2 function master encryption key values are manually entered on the PinPad]

CWA 16926-6:2015 (E)

258

New master keys loaded with WFS_PIN_USERESTRICTEDKEYENCKEY flag, encrypted with themselves:

Loading derived keys:

Usage sample for derived keys:

Master key restriction disallows loading of derived keys with different usage:

App PIN

WFS_CMD_PIN_CRYPT
(WFS_PIN_MODEENCRYPT,”CryptKey”,…,<data to encrypt>)
[crypt encryption key is used to encrypt data]

WFS_CMD_PIN_IMPORT_KEY
(“CryptKey”,“MasterKey1”,NULL,<key data>,WFS_PIN_USECRYPT)
[crypt encryption key is derived from the crypt master encryption key]

WFS_CMD_PIN_IMPORT_KEY
(“MasterKey2”,“MasterKey2”,NULL,<key
data>,WFS_PIN_USERESTRICTEDKEYENCKEY | WFS_PIN_USEFUNCTION)
[function master key values are loaded encrypted with previous function master key values]

WFS_CMD_PIN_IMPORT_KEY
(“FunctionKey”,“MasterKey2”,NULL,<key data>,WFS_PIN_USEFUNCTION)
[function encryption key is derived from the function the master encryption key]

WFS_CMD_PIN_GET_PINBLOCK
(…, “FunctionKey”, NULL)
[function encryption key is used encrypts the formatted PIN]

WFS_CMD_PIN_IMPORT_KEY
(“CryptKey2”,“MasterKey2”,NULL,<key data>,WFS_PIN_USECRYPT)
[this command fails with WFS_ERR_PIN_USEVIOLATION because the encryption key MasterKey2
is of fwUse WFS_PIN_USERESTRICTEDKEYENCKEY | WFS_PIN_USEFUNCTION and cannot be
used to derive an encryption key with fwUse WFS_PIN_USECRYPT]

App PIN WFS_CMD_PIN_IMPORT_KEY
(“MasterKey1”,“MasterKey1”,NULL,<key
data>,WFS_PIN_USERESTRICTEDKEYENCKEY | WFS_PIN_USECRYPT)
[crypt master key values are loaded encrypted with previous crypt master key values]

App PIN

App PIN

CWA 16926-6:2020 (E)

259

Typical fwUse encryption key use combinations are:

W

FS
_P

IN
_C

R
Y

PT

W
FS

_P
IN

_F
U

N
C

TI
O

N

W
FS

_P
IN

_M
A

C
IN

G

W
FS

_P
IN

_U
SE

SV
EN

C
K

EY

W
FS

_P
IN

_U
SE

PI
N

LO
C

A
L

W
FS

_P
IN

_U
SE

PI
N

R
EM

O
TE

W
FS

_P
IN

_K
EY

EN
C

K
EY

W
FS

_P
IN

_A
N

ST
R

31
M

A
ST

ER

W
FS

_P
IN

_R
ES

TR
IC

TE
D

K
EY

EN
C

K
EY

Description

√ Data encryption/decryption key
 √ PIN encryption key
 √ MACing key
 √ CBC Start Value encryption key
 √ Local PIN check key
 √ PIN block creation key
 √ Master/key encryption key
 √ ANS X9 TR-31 master/key encryption key

√ √ √ Master/key encryption key, keys later derived are
restricted to the use WFS_PIN_USECRYPT

 √ √ √ Master/key encryption key, keys later derived are
restricted to the use WFS_PIN_USEFUNCTION

 √ √ √ Master/key encryption key, keys later derived are
restricted to the use WFS_PIN_USEMACING

 √ √ √ Master/key encryption key, keys later derived are
restricted to the use WFS_PIN_USESVENCKEY

 √ √ √ Master/key encryption key, keys later derived are
restricted to the use WFS_PIN_USEPINLOCAL

 √ √ √ Master/key encryption key, keys later derived are
restricted to the use WFS_PIN_USEPINREMOTE

CWA 16926-6:2015 (E)

260

8.8 WFS_CMD_PIN_IMPORT_KEY_340 command Input/Output Parameters

The tables in this section describe the input/output parameters for various scenarios in which the
WFS_CMD_PIN_IMPORT_KEY_340 command is used, compared to input/output parameters for older
commands that it supercedes.

CWA 16926-6:2020 (E)

261

8.8.1 Importing a 3DES 16-byte terminal master key using signature-based
remote key loading (SRKL):

For this example, the following input data is available:

Name of key to be imported = TestKey

Name of the key used to decrypt the encrypted key value = _EPPCryptKey

Name of the key used to verify the signature = HostKey

Encrypted key value = <encrypted key value>

Signature = <signature generated by the host>

Usage of the key to be imported = key encrypting key

RSA Encipher Algorithm = RSA ES OAEP

RSA Signature Algorithm = RSA SSA PSS

WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY Input Data

Parameter Name Example Value

lpsKey TestKey

lpsDecryptKey _EPPCryptKey

dwRSAEnchiperAlgorithm WFS_PIN_CRYPT_RSAES_OAEP

lpxValue <encrypted key value>

dwUse WFS_PIN_USEKEYENCKEY

lpsSigKey HostKey

dwRSASignatureAlgorithm WFS_PIN_SIGN_RSASSA_PSS

lpxSignature <signature generated by the host>

For this example, the following output data is expected:

Key Check Mode = KCV Zero

Key Check Value = <key check value>

Key Length = double length key

WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY Output Data

Parameter Name Example Value

wKeyLength WFS_PIN_KEYDOUBLE

wKeyCheckMode WFS_PIN_KCVZERO

lpxKeyCheckValue <key check value>

WFS_CMD_PIN_IMPORT_KEY_340 Input Data

Parameter Name Example Value

lpsKey TestKey

lpKeyAttributes->bKeyUsage ‘K0’

lpKeyAttributes->bAlgorithm ‘T’

CWA 16926-6:2015 (E)

262

lpKeyAttributes->bModeOfUse ‘D’

lpKeyAttributes->dwCryptoMethod 0

lpxValue <encrypted key value>

lpsDecryptKey _EPPCryptKey

dwDecryptMethod WFS_PIN_CRYPT_RSAES_OAEP

lpxVerificationData <signature generated by the host>

lpsVerifyKey HostKey

lpVerifyAttributes->bKeyUsage ‘S0’

lpVerifyAttributes->bAlgorithm ‘R’

lpVerifyAttributes->bModeOfUse ‘V’

lpVerifyAttributes->dwCryptoMethod WFS_PIN_SIGN_RSASSA_PSS

lpxVendorAttributes NULL

WFS_CMD_PIN_IMPORT_KEY_340 Output Data

Parameter Name Example Value

lpVerifyAttributes->bKeyUsage ‘00’

lpVerifyAttributes->bAlgorithm ‘T’

lpVerifyAttributes->bModeOfUse ‘V’

lpVerifyAttributes->dwCryptoMethod WFS_PIN_KCVZERO

lpxVerifyData <key check value>

ulKeyLength 128

(Similar to wKeyLength, but a ULONG measuring the
number of bits in the imported key)

CWA 16926-6:2020 (E)

263

8.8.2 Importing a 16-byte DES key for PIN encryption with a key check value in
the input

For this example, the following input data is available:

Name of key to be imported = TestKey

Name of the key used to decrypt the encrypted key value = MasterKey

Encrypted key value = <encrypted key value>

Usage of the key to be imported = PIN Encryption

Key Check Mode = KCV Zero

Key Check Value = <key check value>

WFS_CMD_PIN_IMPORT_KEY_EX Import Data

Parameter Name Example Value

lpsKey TestKey

lpsEncKey MasterKey

lpxValue <encrypted key value>

lpxControlVector NULL

dwUse WFS_PIN_USEPINREMOTE

wKeyCheckMode WFS_PIN_KCVZERO

lpxKeyCheckValue <key check value>

For this example, the following output data is expected:

Key Length = double length key

WFS_CMD_PIN_IMPORT_KEY_EX Output Data

None

WFS_CMD_PIN_IMPORT_KEY_340 Input Data

Parameter Name Example Value

lpsKey TestKey

lpKeyAttributes->bKeyUsage ‘P0’

(Similar to dwUse but a more precise key usage)

lpKeyAttributes->bAlgorithm ‘T’

lpKeyAttributes->bModeOfUse ‘E’

lpKeyAttributes->dwCryptoMethod 0

lpxValue <encrypted key value>

lpsDecryptKey MasterKey

dwDecryptMethod WFS_PIN_CRYPTOECB

lpxVerificationData <key check value>

lpsVerifyKey NULL

CWA 16926-6:2015 (E)

264

lpVerifyAttributes->bKeyUsage ‘00’

lpVerifyAttributes->bAlgorithm ‘T’

lpVerifyAttributes->bModeOfUse ‘V’

lpVerifyAttributes->dwCryptoMethod WFS_PIN_KCVZERO

lpxVendorAttributes NULL

Likewise, the following output data is expected:

WFS_CMD_PIN_IMPORT_KEY_340 Output Data

Parameter Name Example Value

lpVerifyAttributes NULL

lpxVerifyData NULL

ulKeyLength 128

CWA 16926-6:2020 (E)

265

8.8.3 Importing a 16-byte DES key for MACing (MAC Algorithm 3)

For this example, the following input data is available:

Name of key to be imported = TestKey

Name of the key used to decrypt the encrypted key value = MasterKey

Encrypted key value = <encrypted key value>

Usage of the key to be imported = MAC

WFS_CMD_PIN_IMPORT_KEY Input Data

Parameter Name Example Value

lpsKey TestKey

lpsEncKey MasterKey

lpxIdent NULL

lpxValue <encrypted key value>

fwUse WFS_PIN_USEMACING

For this example, the following output data is expected:

Key Check Mode = KCV Zero

Key Check Value = <key check value>

Key Length = double length key

WFS_CMD_PIN_IMPORT_KEY Output Data

Parameter Name Example Value

lpxKVC <key check value>

WFS_CMD_PIN_IMPORT_KEY_340 Input Data

Parameter Name Example Value

lpsKey TestKey

lpKeyAttributes->bKeyUsage ‘M3’

(Similar to fwUse but a more precise key usage)

lpKeyAttributes->bAlgorithm ‘T’

lpKeyAttributes->bModeOfUse ‘G’

lpKeyAttributes->dwCryptoMethod 0

lpxValue <encrypted key value>

lpsDecryptKey MasterKey

dwDecryptMethod WFS_PIN_CRYPTOECB

lpxVerificationData NULL

lpsVerifyKey NULL

lpVerifyAttributes NULL

lpxVendorAttributes NULL

CWA 16926-6:2015 (E)

266

WFS_CMD_PIN_IMPORT_KEY_340 Output Data

Parameter Name Example Value

lpVerifyAttributes->bKeyUsage ‘00’

lpVerifyAttributes->bAlgorithm ‘T’

lpVerifyAttributes->bModeOfUse ‘V’

lpVerifyAttributes->dwCryptoMethod WFS_PIN_KCVZERO

lpxVerifyData <key check value>

ulKeyLength 128

CWA 16926-6:2020 (E)

267

8.8.4 Importing a 2048-bit Host RSA public key

For this example, the following input data is available:

Name of key to be imported = HostKey

Name of the key used to verify the signature = _SigIssuerVendor

Key value = <key value>

Signature = <signature generated by the vendor signature issuer>

Usage of the key to be imported = RSA signature verification

RSA Signature Algorithm = RSA SSA PSS

WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY Input Data

Parameter Name Example Value

lpsKey HostKey

lpxValue <key value>

dwUse WFS_PIN_USERSAPUBLICVERIFY

lpsSigKey _SigIssuerVendor

dwRSASignatureAlgorithm WFS_PIN_SIGN_RSASSA_PSS

lpxSignature <signature generated by the vendor signature issuer>

For this example, the following output data is expected:

RSA Key Check Mode = SHA256 digest

Key Check Value = <SHA256 digest>

Key Length = 2048

WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY Output Data

Parameter Name Example Value

dwRSAKeyCheckMode WFS_PIN_RSA_KCV_SHA256

lpxKeyCheckValue <SHA256 digest>

WFS_CMD_PIN_IMPORT_KEY_340 Input Data

Parameter Name Example Value

lpsKey HostKey

lpKeyAttributes->bKeyUsage ‘S0’

lpKeyAttributes->bAlgorithm ‘R’

lpKeyAttributes->bModeOfUse ‘V’

lpKeyAttributes->dwCryptoMethod 0

lpxValue <key value>

lpsDecryptKey NULL

dwDecryptMethod 0

lpxVerificationData <signature generated by the vendor signature issuer>

lpsVerifyKey _SigIssuerVendor

CWA 16926-6:2015 (E)

268

lpVerifyAttributes->bKeyUsage ‘S1’

lpVerifyAttributes->bAlgorithm ‘R’

lpVerifyAttributes->bModeOfUse ‘V’

lpVerifyAttributes->dwCryptoMethod WFS_PIN_SIGN_RSASSA_PSS

lpxVendorAttributes NULL

WFS_CMD_PIN_IMPORT_KEY_340 Output Data

Parameter Value Example Value

lpVerifyAttributes->bKeyUsage ‘00’

lpVerifyAttributes->bAlgorithm ‘R’

lpVerifyAttributes->bModeOfUse ‘V’

lpVerifyAttributes->dwCryptoMethod WFS_PIN_RSA_KCV_SHA256

lpxVerifyData <SHA256 digest>

ulKeyLength 2048

CWA 16926-6:2020 (E)

269

8.8.5 Importing a 24-byte DES symmetric data encryption key via TR-31
keyblock

For this example, the following input data is available:

Name of key to be imported = TestKey

Name of the key block protection key = MasterKey

Key block = <key block>

WFS_CMD_PIN_IMPORT_KEYBLOCK Input Data

Parameter Name Example Value

lpsKey TestKey

lpsEncKey MasterKey

lpxKeyBlock <key block>

For this example, the following output data is expected:

Key Length = triple length (192 bits) DES key

WFS_CMD_PIN_IMPORT_KEYBLOCK Output Data
None

WFS_CMD_PIN_IMPORT_KEY_340 Input Data

Parameter Name Example Value

lpsKey TestKey

lpKeyAttributes->bKeyUsage ‘D0’

lpKeyAttributes->bAlgorithm ‘T’

lpKeyAttributes->bModeOfUse ‘E’

lpKeyAttributes->dwCryptoMethod 0

lpxValue <key block>

lpsDecryptKey MasterKey

dwDecryptMethod 0

lpxVerificationData NULL

lpsVerifyKey NULL

lpVerifyAttributes NULL

lpxVendorAttributes NULL

WFS_CMD_PIN_IMPORT_KEY_340 Output Data

Parameter Name Example Value

lpVerifyAttributes NULL

lpxVerifyData NULL

ulKeyLength 192

CWA 16926-6:2015 (E)

270

9. Appendix-B (Country Specific WFS_CMD_PIN_ENC_IO protocols)

This section is used for country-specific extensions to the WFS_CMD_PIN_ENC_IO command.

9.1 Luxemburg Protocol

The general XFS command WFS_CMD_PIN_ENC_IO is used to communicate transparently with the security
module (see also command specifications).

In particular, to access the Luxembourg encryption commands defined in the following paragraphs, the input
structure WFSPINENCIO of the WFS_CMD_PIN_ENC_IO command has to be defined as follows:

Input Param LPWFSPINENCIO lpEncIoIn;
typedef struct _wfs_pin_enc_io
 {
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
 } WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Must be set to the constant WFS_PIN_ENC_PROT_LUX.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to an input structure that contains the data specific to the Luxemburg protocol that has to be
sent to the encryption module. This input structure is specific for each command defined in the
protocol (see following paragraphs), but has following general form:
LPPROTLUXIN lpvData;

typedef struct _prot_lux_in
 {
 WORD wCommand;
... Command Input Data ...
 } PROTLUXIN, *LPPROTLUXIN;

wCommand
Specifies the command that has to be executed in the security module.

Value Meaning
WFS_CMD_ENC_IO_LUX_LOAD_APPKEY Load an Application Key.
WFS_CMD_ENC_IO_LUX_GENERATE_MAC Generate the CBC-MAC.
WFS_CMD_ENC_IO_LUX_CHECK_MAC Check the CBC-MAC.
WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK Build the PIN block.
WFS_CMD_ENC_IO_LUX_DECRYPT_TDES Decrypt data.
WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES Encrypt data.

... Command Input Data ...
Specifies the command input data. This field is specific for each command defined in the
protocol (see following paragraphs).

In the same way, to access the results of the private Luxembourg encryption commands, the output structure
LPWFSPINENCIO of the WFS_CMD_PIN_ENC_IO command will be as follows:

Output Param LPWFSPINENCIO lpEncIoOut;
typedef struct _wfs_pin_enc_io
 {
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
 } WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Is set to the constant WFS_PIN_ENC_PROT_LUX.

CWA 16926-6:2020 (E)

271

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a PROTLUXOUT structure that contains the reply data specific to the Luxembourg
protocol. This output structure is specific for each command defined in the protocol (see
following paragraphs), but has following general form:

typedef struct _prot_lux_out
 {
 WORD wCommand;
 WORD wResult;
 ... Command Output Data ...
 } PROTLUXOUT, *LPPROTLUXOUT;

wCommand
Specifies the command that has to be executed in the encryption module. This field contains
the same value as the corresponding field in the input structure.

wResult
Specifies the command reply codes specific for this protocol. Possible general values for the
Luxemburg protocol are:

Value Meaning
PROT_LUX_SUCCESS Command terminated correctly.
PROT_LUX_ERR_INVALID_CMD Invalid command. The wCommand

issued is not valid or not supported.
PROT_LUX_ERR_INVALID_DATA The data structure passed as input

parameter for the command contains
invalid or incoherent data.

PROT_LUX_ERR_INVALID_KEY The key needed for the operation was not
loaded or is invalid. This operation
failed.

... Command Output Data ...
Specifies the command output data. This field is specific for each command defined in the
protocol (see following paragraphs). In the case of an error, the command specific structure is
returned, but only the wCommand and the wResult fields are valid.

Comments Luxembourg encryption commands defined in the following paragraphs will return the generic
error PROT_LUX_ERR_INVALID_DATA when the input data is invalid.
Note that since the introduction of the error codes for the Luxemburg Protocol, they have been
redefined in the header file as positive values. This is to correct the original oversight of being
defined as negative values which cannot be meaningfully returned in the WORD wResult output
parameter. They have therefore been redefined as positive values in such a way that existing and
future implementations which type cast them to an unsigned type will not be impacted.

CWA 16926-6:2015 (E)

272

9.1.1 WFS_CMD_ENC_IO_LUX_LOAD_APPKEY

Description This command can be used to load an Application Key and to replace the Transport Key. Once
the keys are loaded the encryptor will use the keys to do the other commands.

The encryptor will use the Application Key to obtain a random encrypted session key needed for
the PIN Encryption, the MAC Computation and the Data Encryption/Decryption.

The application will use the Transport Key for loading the other keys (MK_MAC, MK_PAC and
MK_ENC) into the encryptor.

When this command is used for replacing the Transport Key, the new Transport key is provided
encrypted by the existing Transport Key.

The generation of the first Transport Key is the responsibility of the Authorization Center in
Luxemburg (CETREL). The loading method of the first Transport Key into the encryptor is
vendor dependent.

Keys loaded through this command are reported through the WFS_INF_PIN_KEY_DETAIL and
WFS_INF_PIN_KEY_DETAIL_EX commands.

Keys loaded through this command do not require to be deleted before the application can replace
them.

To access this command, the structure WFSPINENCIO of the WFS_CMD_PIN_ENC_IO
command has to be defined as required by the Luxembourg protocol (see general definition in the
first paragraph). The only definitions specific to this command are the input and output structures
pointed to by the lpvData fields. They are defined as follows:

Input Param LPPROTLUXLOADAPPKEY lpvData;
typedef struct _prot_lux_load_app_key_in
 {
 WORD wCommand;
 LPSTR lpsKeyName;
 LPSTR lpsSequenceNumber;
 LPWFSXDATA lpxKeyData;
 } PROTLUXLOADAPPKEYIN, *LPPROTLUXLOADAPPKEYIN;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_LOAD_APPKEY.

lpsKeyName
This field contains the name of the key to be loaded. The Service Provider will right pad the
lpsKeyName to 20 bytes with char 0x20.

Allowed values are:

 “MK_MAC” for the MAC key. Used for MAC calculation only.

 “MK_PAC” for the PIN block key. Used for PIN block construction only.

 “MK_ENC” for the ENC/DEC key. Used for data encryption/decryption only.

 “BANK_TRANS_KEY” for the Transport Key. It can only be used for loading the other
keys (MK_MAC, MK_PAC and MK_ENC) into the encryptor.

lpsSequenceNumber
This field is defined by the Authorization Center in Luxemburg (CETREL) and contains a 4 bytes
key logic number as follows:

 Least significant 2 bytes represent the Key Generation

 Most significant 2 bytes represent the Key Version

The key logic number will contribute in the MAC calculation, in the PIN block construction and
in the Data Encryption/Decryption.

Allowed values are:

 “2001” for the MK_MAC key

 “2002” for the MK_PAC key

CWA 16926-6:2020 (E)

273

 “2003” for the MK_ENC key

 “2004” for the BANK_TRANS_KEY encrypted by the existing BANK_TRANS_KEY

lpxKeyData
lpxKeyData contains the 40 bytes of the Key data in ZKA key-file format (encrypted key of 16
bytes, HASH of 16 bytes and MAC of 8 bytes).

The MAC in the lpxKeyData is calculated with the contribution of the values from the
lpsKeyName (20 bytes), lpsSequenceNumber (4 bytes) and the key data itself (16 bytes) in the
following order:

 lpsKeyName

 lpsSequenceNumber

 Key data

Output Param LPPROTLUXLOADAPPKEYOUT lpvData;
typedef struct _prot_lux_load_app_key_out
 {
 WORD wCommand;
 WORD wResult;
 } PROTLUXLOADAPPKEYOUT, *LPPROTLUXLOADAPPKEYOUT;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_LOAD_APPKEY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes are possible:

Value Meaning
PROT_LUX_ERR_VERIFICATION_FAILED Verification failed. The supplied MAC does

not match with the calculated MAC.

Comments This command will return generic error PROT_LUX_ERR_INVALID_KEY when Key Transport
Key is not loaded.

CWA 16926-6:2015 (E)

274

9.1.2 WFS_CMD_ENC_IO_LUX_GENERATE_MAC

Description This command is used to generate the CBC-MAC (Message Authentication Code ISO9797-
1:1999, Padding Method 1, MAC Algorithm 3).

This command returns the generated MAC for the data passed in.

To access the WFS_CMD_ENC_IO_LUX_GENERATE_MAC command, the structure
WFSPINENCIO of the WFS_CMD_PIN_ENC_IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the lpvData fields. Those are
defined as follows:

Input Param LPPROTLUXGENERATEMACIN lpvData;
typedef struct _prot_lux_generate_mac_in
 {
 WORD wCommand;
 LPWFSXDATA lpxData;
 WORD wMacLength;
 } PROTLUXGENERATEMACIN, *LPPROTLUXGENERATEMACIN;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_GENERATE_MAC.

lpxData
The lpxData parameter contains the data whose MAC is to be generated. Data will be padded
according to ISO9797-1:1999, Padding Method 1 if it is not passed in as multiple of 8 bytes.

wMacLength
Specifies the MAC length. Legal values are: 2, 4, 6 or 8.

Output Param LPPROTLUXGENERATEMACOUT lpvData;
typedef struct _prot_lux_generate_mac_out
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxMac;
 LPWFSXDATA lpxRandom;
 } PROTLUXGENERATEMACOUT, *LPPROTLUXGENERATEMACOUT;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_GENERATE_MAC.

wResult
The command reply codes (see general definition in the first paragraph).

lpxMac
The lpxMac parameter contains the generated MAC.

lpxRandom
The lpxRandom parameter contains the random value used to work out the session key.

Comments The MAC is in ISO9797-1 format and is obtained from a random session key. The generated
MAC is returned with the lpxRandom value that was used to obtain the random session key. This
command will return generic error PROT_LUX_ERR_INVALID_KEY when MK_MAC key is
not loaded.

CWA 16926-6:2020 (E)

275

9.1.3 WFS_CMD_ENC_IO_LUX_CHECK_MAC

Description This command verifies the CBC-MAC (Message Authentication Code ISO9797-1:1999, Padding
Method 1, MAC Algorithm 3).

This command generates a MAC for the data passed in and compares it with the provided MAC
value.

To access the WFS_CMD_ENC_IO_LUX_CHECK_MAC command, the structure
WFSPINENCIO of the WFS_CMD_PIN_ENC_IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the lpvData fields. Those are
defined as follows:

Input Param LPPROTLUXCHECKMACIN lpvData;
typedef struct _prot_lux_check_mac_in
 {
 WORD wCommand;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxMac;
 LPWFSXDATA lpxRandom;
 } PROTLUXCHECKMACIN, *LPPROTLUXCHECKMACIN;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_CHECK_MAC.

lpxData
The lpxData parameter contains the data whose MAC is to be checked. Data will be padded
according to ISO9797-1:1999, Padding Method 1 if it is not passed in as multiple of 8 bytes.

lpxMac
The lpxMac parameter contains the MAC that is to be checked.

Legal values for the MAC length are: 2, 4, 6 or 8.

lpxRandom
The lpxRandom parameter contains the random value used to work out the session key.

Output Param LPPROTLUXCHECKMACOUT lpvData;
typedef struct _prot_lux_check_mac_out
 {
 WORD wCommand;
 WORD wResult;
 } PROTLUXCHECKMACOUT, *LPPROTLUXCHECKMACOUT;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_CHECK_MAC.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes can be returned:

Value Meaning
PROT_LUX_ERR_VERIFICATION_FAILED Verification Failed. The MAC generated by

this command does not compare with the
MAC passed in by the application.

Comments If the value of wResult is PROT_LUX_SUCCESS, then the MAC check was successful. This
command will return generic error PROT_LUX_ERR_INVALID_KEY when MK_MAC key is
not loaded.

CWA 16926-6:2015 (E)

276

9.1.4 WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK

Description This command is used to construct the PIN blocks described below for remote PIN check. For
PIN block format see comment section below.

To access the WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK command, the structure
WFSPINENCIO of the WFS_CMD_PIN_ENC_IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the lpvData fields. Those are
defined as follows:

Input Param LPPROTLUXPINBLOCKIN lpvData;
typedef struct _prot_lux_pinblock_in
 {
 WORD wCommand;
 WORD wFormat;
 } PROTLUXPINBLOCKIN, *LPPROTLUXPINBLOCKIN;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK.

wFormat
Specifies the format of the PIN block. Possible values are:

Value Meaning
PROT_LUXFORMISO1 ISO-1 PIN Block

Output Param PROTLUXPINBLOCKOUT lpvData;
typedef struct _prot_lux_pinblock_out
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxPinBlock;
 LPWFSXDATA lpxRandom;
 } PROTLUXPINBLOCKOUT, *LPPROTLUXPINBLOCKOUT;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_LUX_ERR_PIN_FORMAT_LENGTH The PIN block could not be constructed

because PIN was not entered or the PIN
length was invalid.

lpxPinBlock
The lpxPinBlock parameter contains the constructed PIN block.

lpxRandom
The lpxRandom parameter contains the random value used to calculate the session key.

Comments The PIN block is constructed in an ISO-1 format with random number padding and then Triple
DES encrypted using a random session key. The encrypted PIN block is returned with the
lpxRandom value that was used to obtain the random session key. This command will return
generic error PROT_LUX_ERR_INVALID_KEY when MK_PAC key is not loaded.

CWA 16926-6:2020 (E)

277

9.1.5 WFS_CMD_ENC_IO_LUX_DECRYPT_TDES

Description This command is used to decrypt the data according to triple DES algorithm.

To access the WFS_CMD_ENC_IO_LUX_DECRYPT_TDES command, the structure
WFSPINENCIO of the WFS_CMD_PIN_ENC_IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the lpvData fields. Those are
defined as follows:

Input Param LPPROTLUXDECRYPTTDESIN lpvData;
typedef struct _prot_lux_decrypt_tdes_in
 {
 WORD wCommand;
 WORD wType;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxIV;
 LPWFSXDATA lpxRandom;
} PROTLUXDECRYPTTDESIN, *LPPROTLUXDECRYPTTDESIN;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_DECRYPT_TDES.

wType
An integer word specifying the type of triple DES decryption to be used as one of the following
flags:

Value Meaning
PROT_LUXTRIDESECB Triple DES with Electronic Code Book.
PROT_LUXTRIDESCBC Triple DES with Cipher Block Chaining.

lpxData
The lpxData parameter contains the data to be decrypted. Data must be multiple of 8-byte blocks.

lpxIV
If wType is WFS_PIN_LUXTRIDESCBC then this field contains the 8 bytes of data containing
the Initial Value needed for decryption in CBC mode. Otherwise this field is ignored.

lpxRandom
The lpxRandom parameter contains the random value used to calculate the session key.

Output Param LPPROTLUXDECRYPTTDESOUT lpvData;
typedef struct _prot_lux_decrypt_tdes_out
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxData;
 } PROTLUXDECRYPTTDESOUT, *LPPROTLUXDECRYPTTDESOUT;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_DECRYPT_TDES.

wResult
The command reply codes (see general definition in the first paragraph).

lpxData
The lpxData parameter contains the decrypted data.

Comments The Triple-DES decryption uses a random session key. The session key is derived from a random
number that is provided in lpxRandom. This command will return generic error
PROT_LUX_ERR_INVALID_KEY when MK_ENC key is not loaded.

CWA 16926-6:2015 (E)

278

9.1.6 WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES

Description This command is used to encrypt the data according to triple DES algorithm.

To access the WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES command, the structure
WFSPINENCIO of the WFS_CMD_PIN_ENC_IO command has to be defined as required by the
Luxembourg protocol (see general definition in the first paragraph). The only definitions specific
to this command are the input and output structures pointed by the lpvData fields. Those are
defined as follows:

Input Param LPPROTLUXENCRYPTTDESIN lpvData;
typedef struct _prot_lux_encrypt_tdes_in
 {
 WORD wCommand;
 WORD wType;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxIV;
 } PROTLUXENCRYPTTDESIN, *LPPROTLUXENCRYPTTDESIN;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES.

wType
An integer word specifying the type of triple DES encryption to be used as one of the following
flags:

Value Meaning
WFS_PIN_LUXTRIDESECB Triple DES with Electronic Code Book.
WFS_PIN_LUXTRIDESCBC Triple DES with Cipher Block Chaining.

lpxData
The lpxData parameter contains the data to be encrypted. Data must be multiple of 8-byte blocks.
Application must fill the end of the data with 0x00 if the data does not contain a multiple of 8-
byte blocks.

lpxIV
If wType is WFS_PIN_LUXTRIDESCBC then this field contains the 8 bytes of data containing
the Initial Value needed for encryption in CBC mode. Otherwise this field is ignored.

Output Param LPPROTLUXENCRYPTTDESOUT lpvData;
typedef struct _prot_lux_encrypt_tdes_out
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxRandom;
 } PROTLUXENCRYPTTDESOUT, *LPPROTLUXENCRYPTTDESOUT;

wCommand
Is set to WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES.

wResult
The command reply codes (see general definition in the first paragraph).

lpxData
The lpxData parameter contains the encrypted data.

lpxRandom
The lpxRandom parameter contains the random value used to calculate the session key.

Comments The Triple-DES encryption uses a random session key. The session key is derived from a random
number that is returned in lpxRandom. This command will return generic error.

CWA 16926-6:2020 (E)

279

9.1.7 Luxemburg-specific Header File

This header section is to be created into a separate file from the standard xfspin.h and identifies the definitions for
the Luxemburg Protocol only.
/**
* *
*xfspinlux.h XFS - Personal Identification Number Keypad (PIN) Luxemburg *
*Protocol definitions *
* *
* *
* *
**/
#ifndef __INC_XFSPINLUX__H
#define __INC_XFSPINLUX__H

#ifdef __cplusplus
extern "C" {
#endif

/* be aware of alignment */
#pragma pack(push,1)

/* values of PROTLUXIN.wCommand */

#define WFS_CMD_ENC_IO_LUX_LOAD_APPKEY (0x0001)
#define WFS_CMD_ENC_IO_LUX_GENERATE_MAC (0x0002)
#define WFS_CMD_ENC_IO_LUX_CHECK_MAC (0x0003)
#define WFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK (0x0004)
#define WFS_CMD_ENC_IO_LUX_DECRYPT_TDES (0x0005)
#define WFS_CMD_ENC_IO_LUX_ENCRYPT_TDES (0x0006)

#define PROT_LUX_RESULT_OFFSET (0)

/* values of PROTLUXOUT.wResult */

#define PROT_LUX_SUCCESS (0)
#define PROT_LUX_ERR_INVALID_CMD (USHRT_MAX-(PROT_LUX_RESULT_OFFSET))
#define PROT_LUX_ERR_INVALID_DATA (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 1))
#define PROT_LUX_ERR_INVALID_KEY (USHRT_MAX-(PROT_LUX_RESULT_OFFSET + 2))

/* values of PROTLUXLOADAPPKEYOUT.wResult */
/* values of PROTLUXCHECKMACOUT.wResult */

#define PROT_LUX_ERR_VERIFICATION_FAILED (USHRT_MAX -(PROT_LUX_RESULT_OFFSET + 3))

/* values of PROTLUXPINBLOCKOUT.wResult */

#define PROT_LUX_ERR_PIN_FORMAT_LENGTH (USHRT_MAX -(PROT_LUX_RESULT_OFFSET + 4))

/* values of PROTLUXDECRYPTTDESIN.wType and PROTLUXENCRYPTTDESIN.wType*/

#define PROT_LUXTRIDESECB (0x0000)
#define PROT_LUXTRIDESCBC (0x0001)

/* values of PROTLUXPINBLOCKIN.fwFormat */

#define PROT_LUXFORMISO1 (0x0001)

// Used to type-cast specific command to access common fields
typedef struct _prot_lux_in
{
 WORD wCommand;
} PROTLUXIN, *LPPROTLUXIN;

// Used to type-cast specific response to access common fields

CWA 16926-6:2015 (E)

280

typedef struct _prot_lux_out
{
 WORD wCommand;
 WORD wResult;
} PROTLUXOUT, *LPPROTLUXOUT;

typedef struct _prot_lux_load_app_key_in
{
 WORD wCommand;
 LPSTR lpsKeyName;
 LPSTR lpsSequenceNumber;
 LPWFSXDATA lpxKeyData;
} PROTLUXLOADAPPKEYIN, *LPPROTLUXLOADAPPKEYIN;

typedef struct _prot_lux_load_app_key_out
{
 WORD wCommand;
 WORD wResult;
} PROTLUXLOADAPPKEYOUT, *LPPROTLUXLOADAPPKEYOUT;

typedef struct _prot_lux_generate_mac_in
{
 WORD wCommand;
 LPWFSXDATA lpxData;
 WORD wMacLength;
} PROTLUXGENERATEMACIN, *LPPROTLUXGENERATEMACIN;

typedef struct _prot_lux_generate_mac_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxMac;
 LPWFSXDATA lpxRandom;
} PROTLUXGENERATEMACOUT, *LPPROTLUXGENERATEMACOUT;

typedef struct _prot_lux_check_mac_in
{
 WORD wCommand;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxMac;
 LPWFSXDATA lpxRandom;
} PROTLUXCHECKMACIN, *LPPROTLUXCHECKMACIN;

typedef struct _prot_lux_check_mac_out
{
 WORD wCommand;
 WORD wResult;
} PROTLUXCHECKMACOUT, *LPPROTLUXCHECKMACOUT;

typedef struct _prot_lux_pinblock_in
{
 WORD wCommand;
 WORD wFormat;
}PROTLUXPINBLOCKIN, *LPPROTLUXPINBLOCKIN;

typedef struct _prot_lux_pinblock_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxPinBlock;
 LPWFSXDATA lpxRandom;
} PROTLUXPINBLOCKOUT, *LPPROTLUXPINBLOCKOUT;

typedef struct _prot_lux_decrypt_tdes_in
{
 WORD wCommand;
 WORD wType;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxIV;
 LPWFSXDATA lpxRandom;

CWA 16926-6:2020 (E)

281

} PROTLUXDECRYPTTDESIN, *LPPROTLUXDECRYPTTDESIN;

typedef struct _prot_lux_decrypt_tdes_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxData;
} PROTLUXDECRYPTTDESOUT , *LPPROTLUXDECRYPTTDESOUT;

typedef struct _prot_lux_encrypt_tdes_in
{
 WORD wCommand;
 WORD wType;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxIV;
} PROTLUXENCRYPTTDESIN, *LPPROTLUXENCRYPTTDESIN;

typedef struct _prot_lux_encrypt_tdes_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxData;
 LPWFSXDATA lpxRandom;
} PROTLUXENCRYPTTDESOUT, *LPPROTLUXENCRYPTTDESOUT;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSPINLUX__H */

9.2 China Protocol

The general XFS command WFS_CMD_PIN_ENC_IO is used to communicate transparently with the security
module (see also command specifications).

In particular, to access the China encryption commands defined in the following paragraphs, the input structure
WFSPINENCIO of the WFS_CMD_PIN_ENC_IO command has to be defined as follows:

Input Param LPWFSPINENCIO lpEncIoIn;
typedef struct _wfs_pin_enc_io
 {
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
 } WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Must be set to the constant WFS_PIN_ENC_PROT_CHN.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to an input structure that contains the data specific to the China protocol that has to be sent
to the encryption module. This input structure is specific for each command defined in the
protocol (see following paragraphs), but has following general form:
LPPROTCHNIN lpvData;

CWA 16926-6:2015 (E)

282

typedef struct _prot_chn_in
 {
 WORD wCommand;
... Command Input Data ...
 } PROTCHNIN, *LPPROTCHNIN;

wCommand
Specifies the command that has to be executed in the security module.

Value Meaning
WFS_CMD_ENC_IO_CHN_ DIGEST Compute a hash code.
WFS_CMD_ENC_IO_CHN_SET_SM2_PARAM Set SM2 parameter.
WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY Load SM2 public

key.
WFS_CMD_ENC_IO_CHN_SIGN Sign SM2 algorithm data.
WFS_CMD_ENC_IO_CHN_VERIFY Verify SM2 algorithm signature.
WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM Export

data elements.
WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR Generate a new

SM2 key pair.
WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM Export data

elements signed by a private key.
WFS_CMD_ENC_IO_CHN _IMPORT_SM2_SIGNED_SM4_KEY Load SM4 key.

... Command Input Data ...
Specifies the command input data. This field is specific for each command defined in the
protocol (see following paragraphs).

In the same way, to access the results of the private China encryption commands, the output structure
LPWFSPINENCIO of the WFS_CMD_PIN_ENC_IO command will be as follows:

Output Param LPWFSPINENCIO lpEncIoOut;
typedef struct _wfs_pin_enc_io
 {
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
 } WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Is set to the constant WFS_PIN_ENC_PROT_CHN.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a PROTCHNOUT structure that contains the reply data specific to the China protocol.
This output structure is specific for each command defined in the protocol (see following
paragraphs), but has following general form:

typedef struct _prot_chn_out
 {
 WORD wCommand;
 WORD wResult;
 ... Command Output Data ...
 } PROTCHNOUT, *LPPROTCHNOUT;

wCommand
Specifies the command that has to be executed in the encryption module. This field contains
the same value as the corresponding field in the input structure.

wResult
Specifies the command reply codes specific for this protocol. Possible general values for the
China protocol are:

Value Meaning
PROT_CHN_SUCCESS Command terminated correctly.
PROT_CHN_ERR_INVALID_CMD Invalid command. The wCommand

issued is not valid or not supported.

CWA 16926-6:2020 (E)

283

PROT_CHN_ERR_INVALID_DATA The data structure passed as input
parameter for the command contains
invalid or incoherent data.

PROT_CHN_ERR_INVALID_KEY The key needed for the operation was not
loaded or is invalid. This operation
failed.

... Command Output Data ...
Specifies the command output data. This field is specific for each command defined in the
protocol (see following paragraphs). In the case of an error, the command specific structure is
returned, but only the wCommand and the wResult fields are valid.

Comments China encryption commands defined in the following paragraphs will return the generic error
PROT_CHN_ERR_INVALID_DATA when the input data is invalid.

CWA 16926-6:2015 (E)

284

9.2.1 WFS_CMD_ENC_IO_CHN_DIGEST

Description: This command is used to compute a hash code on a stream of data using the specified SM3 hash
algorithm. This command can be used to verify PBOC static and dynamic data.

Input Param LPPROTCHNDIGESTIN lpDigestIn;
typedef struct _prot_chn_digest_in
 {
 WORD wCommand;
 WORD wHashAlgorithm;
 LPWFSXDATA lpxDigestInput;
 } PROTCHNDIGESTIN, *LPPROTCHNDIGESTIN;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_DIGEST.

wHashAlgorithm
Specifies which hash algorithm should be used to calculate the hash.

Value Meaning
PROT_CHN_HASH_SM3_DIGEST The SM3 digest algorithm. SM3

Cryptographic hash algorithm is defined in
Password industry standard of the People's
Republic of China GM/T 0004.

lpxDigestInput
Pointer to the structure that contains the length and the data to be hashed.

Output Param LPPROTCHNDIGESTOUT lpDigestOut;
typedef struct _prot_chn_digest_out
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxDigestOutput;
 } PROTCHNDIGESTOUT, *LPPROTCHNDIGESTOUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_DIGEST.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_CHN_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

lpxDigestOuput
Pointer to the structure that contains the length and the data containing the calculated hash.

Comments None.

CWA 16926-6:2020 (E)

285

9.2.2 WFS_CMD_ENC_IO_CHN_SET_SM2_PARAM

Description This command is used to set SM2 algorithm parameter. The SM2 algorithm is based on elliptic
curves. Six parameters need to be set before using to calculate. There are defined in Password
industry standard of the People's Republic of China GM/T 0003.5-2012 [Ref. 43].

Input Param LPPROTCHNSM2ALGORITHMPARAMIN lpSM2AlgorithmParamIn;
typedef struct __prot_chn_sm2_algorithm_param_in
 {
 WORD wCommand;
 LPWFSXDATA lpxP;
 LPWFSXDATA lpxA;
 LPWFSXDATA lpxB;
 LPWFSXDATA lpxN;
 LPWFSXDATA lpxXg;
 LPWFSXDATA lpxYg;
 } PROTCHNSM2ALGORITHMPARAMIN, *LPPROTCHNSM2ALGORITHMPARAMIN;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_SET_SM2_PARAM.

lpxP
Prime number p. It should be greater than 3. It is used to define prime number field Fp It is
defined in Password industry standard of the People's Republic of China GM/T 0003.5-2012 [Ref.
43].

lpxA
An element a in prime number field Fp. They are used to define elliptic curve’s equation: y2 = x3
+ a*x + b. It is defined in Password industry standard of the People's Republic of China GM/T
0003.5-2012 [Ref. 43].

lpxB
An element b in prime number field Fp. They are used to define elliptic curve’s equation: y2 = x3
+ a*x + b. It is defined in Password industry standard of the People's Republic of China GM/T
0003.5-2012 [Ref. 43].

lpxN
The number of base points on the elliptic curve. It should be greater than 2191, and greater than
4*p1/2. It is defined in Password industry standard of the People's Republic of China GM/T
0003.5-2012 [Ref. 43].

lpxXg
The X coordinate of one base point G= (XG, YG) on the elliptic curve. The base point G should be
in the set of prime number field Fp. It is defined in Password industry standard of the People's
Republic of China GM/T 0003.5-2012 [Ref. 43].

lpxYg
The Y coordinate of one base point G= (XG, YG) on the elliptic curve. The base point G should be
in the set of prime number field Fp. It is defined in Password industry standard of the People's
Republic of China GM/T 0003.5-2012 [Ref. 43].

Output Param LPPROTCHNSM2ALGORITHMPARAMOUT lpSM2AlgorithmParamOut;
typedef struct __prot_chn_sm2_algorithm_param_out
 {
 WORD wCommand;
 WORD wResult;
 } PROTCHNSM2ALGORITHMPARAMOUT, *LPPROTCHNSM2ALGORITHMPARAMOUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_SET_SM2_PARAM.

wResult
The command reply codes (see general definition in the first paragraph).

Comments None.

CWA 16926-6:2015 (E)

286

9.2.3 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY

Description The Public SM2 key passed by the application is loaded in the encryption module. The dwUse
parameter restricts the cryptographic functions that the imported key can be used for.

Input Param LPPROTCHNIMPORTSM2PUBLICKEYIN lpImportSM2PublicKeyIn;
typedef struct _prot_chn_import_sm2_public_key_in
 {
 WORD wCommand;
 LPSTR lpsKey;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwSM2SignatureAlgorithm;
 LPWFSXDATA lpxSignature;
 } PROTCHNIMPORTSM2PUBLICKEYIN, *LPPROTCHNIMPORTSM2PUBLICKEYIN;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY.lpsKey
Specifies the name of key being loaded.

lpxValue
Contains the GM/T 2012 SM2 Public Key to be loaded.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning
PROT_CHN_USESM2PUBLIC Key is used as a public key for SM2

Encryption including PBOC PIN block
creation.

PROT_CHN_USESM2PUBLICVERIFY Key is used as a public key for SM2
signature verification and/or data decryption.

If dwUse equals zero the specified key is deleted.

When no signature is required to authenticate the deletion of a public key, all parameters but
lpsKey are ignored. In addition, WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY and
WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY can be used to delete a key
that has been imported with this command.

When a signature is required to authenticate the deletion of the public key, all parameters in the
command are used. lpxValue must contain the concatenation of the Security Item which uniquely
identifies the PIN device (see the command
WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM) and the GM/T 2012
SM2 public key to be deleted. lpxSignature contains the signature generated from lpxValue using
the private key component of the public key being deleted.

The equivalent commands in the certificate scheme must not be used to delete a key imported
through the signature scheme.

lpsSigKey
lpsSigKey specifies the name of a previously loaded asymmetric key (i.e. a SM2 Public Key)
which will be used to verify the signature passed in lpxSignature. The default Signature Issuer
public key (installed in a secure environment during manufacture) will be used, if lpsSigKey is
either NULL or contains the name of the default Signature issuer.

dwSM2SignatureAlgorithm
Defines the algorithm used to generate the Signature specified in lpxSignature. Contains one of
the following values:

Value Meaning
PROT_CHN_PIN_SIGN_NA No signature algorithm specified. No

signature verification will take place and the
contents of lpsSigKey and lpxSignature are
ignored.

CWA 16926-6:2020 (E)

287

PROT_CHN_SIGN_SM2_GM_T_2012 Use the GM/T 2012 SM2 algorithm.

lpxSignature
Contains the Signature associated with the key being imported or deleted. The Signature is used to
validate the key request has been received from a trusted sender. This value contains NULL when
no key validation is required.

Output Param LPPROTCHNIMPORTSM2PUBLICKEYOUT lpImportSM2PublicKeyOut;
typedef struct _prot_chn_import_sm2_public_key_out
 {
 WORD wCommand;
 WORD wResult;
 DWORD dwSM2KeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
 } PROTCHNIMPORTSM2PUBLICKEYOUT, *LPPROTCHNIMPORTSM2PUBLICKEYOUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error codes are possible:

Value Meaning
PROT_CHN_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

PROT_CHN _ERR_PIN_KEYNOTFOUND The key name supplied in lpsSigKey was not
found.

PROT_CHN _ERR_PIN_USEVIOLATION An invalid use was specified for the key
being imported.

PROT_CHN _ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

PROT_CHN _ERR_PIN_INVALIDKEYLENGTH
The length of lpxValue is not supported.

PROT_CHN _ERR_PIN_NOKEYRAM There is no space left in the key RAM for a
key of the specified type.

PROT_CHN _ERR_PIN_SIG_NOT_SUPP The Service Provider does not support the
Signature Algorithm requested. The key was
discarded.

PROT_CHN _PIN_SIGNATUREINVALID The signature verification failed. The key
has not been stored or deleted.

dwSM2KeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be one of the
following flags:

Value Meaning
PROT_CHN_SM2_KCV_NONE No check value is returned in

lpxKeyCheckValue.
PROT_CHN_SM2_KCV_SM3 lpxKeyCheckValue contains a SM3 digest of

the public key.

lpxKeyCheckValue
Contains the public key check value as defined by the dwSM2KeyCheckMode flag.

Comments None.

CWA 16926-6:2015 (E)

288

9.2.4 WFS_CMD_ENC_IO_CHN_SIGN

Description This command is used to sign SM2 algorithm data.

Input Param LPPROTCHNSIGNIN lpSignIn;
typedef struct _prot_chn_sign_in
 {
 WORD wCommand;
 LPSTR lpsKey;
 LPSTR lpSignerID;
 LPWFSXDATA lpxPlaintextData;
 } PROTCHNSIGNIN, *LPPROTCHNSIGNIN;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_SIGN.

lpsKey
Specifies the name of the stored key.

lpSignerID
Specifies the signer’s ID.

lpxPlaintextData
Pointer to the data that need to be signed.

Output Param LPPROTCHNSIGNOUT lpSignOut;
typedef struct _prot_chn_sign_out
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxSignData;
 } PROTCHNSIGNOUT, *LPPROTCHNSIGNOUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_SIGN.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_CHN _ERR_PIN_KEYNOTFOUND The specified key was not found.
PROT_CHN _ERR_PIN_MODENOTSUPPORTED

The specified mode is not supported.
PROT_CHN _ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

PROT_CHN _ERR_PIN_KEYNOVALUE The specified key name was found but the
corresponding key value has not been
loaded.

PROT_CHN _ERR_PIN_USEVIOLATION The specified use is not supported by this
key.

PROT_CHN _ERR_PIN_INVALIDKEYLENGTH
The length of lpxKeyEncKey or
lpxStartValue is not supported or the length
of an encryption key is not compatible with
the encryption operation required.

PROT_CHN _ERR_PIN_NOCHIPTRANSACTIVE
A chipcard key is used as encryption key and
there is no chip transaction active.

PROT_CHN _ERR_PIN_ALGORITHMNOTSUPP
The specified algorithm is not supported by
this key.

lpxSignData
Pointer to the signature.

CWA 16926-6:2020 (E)

289

Comments None.

CWA 16926-6:2015 (E)

290

9.2.5 WFS_CMD_ENC_IO_CHN_VERIFY

Description This command is used to verify SM2 algorithm signature data.

Input Param LPPROTCHNVERIFYIN lpVerifyIn;
typedef struct _prot_chn_verify_in
 {
 WORD wCommand;
 LPSTR lpsKey;
 LPWFSXDATA lpxPlaintextData;
 LPWFSXDATA lpxSignData;
 } PROTCHNVERIFYIN, *LPPROTCHNVERIFYIN;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_VERIFY.

lpsKey
Specifies the name of the stored key.

lpxCipherData
User’s plain text data.

lpxSignData
Signature data signed by WFS_CMD_ENC_IO_CHN_SIGN.

Output Param LPPROTCHNVERIFYOUT lpVerifyOut;
typedef struct __prot_chn_verify_out
 {
 WORD wCommand;
 WORD wResult;
 } PROTCHNVERIFYOUT, *LPPROTCHNVERIFYOUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_VERIFY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_CHN_ERR_PIN_SIGNATUREERROR Signature data is wrong.

Comments None

CWA 16926-6:2020 (E)

291

9.2.6 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM

Description This command is used to export data elements from the PIN device, which have been signed by
an offline Signature Issuer. This command is used when the default keys and Signature Issuer
signatures, installed during manufacture, are to be used for remote key loading.

This command allows the following data items are to be exported:

• The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

• The SM2 Public key component of a public/private key pair that exists within the PIN
device. These public/private key pairs are installed during manufacture. Typically, an
exported public key is used by the host to encipher the symmetric key.

Input Param LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMIN lpExportSM2IssuerSignedItem;
typedef struct _prot_chn_export_sm2_issuer_signed_item_in
 {
 WORD wCommand;
 WORD wExportItemType;
 LPSTR lpsName;
 } PROTCHNEXPORTSM2ISSUERSIGNEDITEMIN,
 *LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMIN;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM.

wExportItemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:

Value Meaning
PROT_CHN _PIN_EXPORT_EPP_ID The Unique ID for the PIN will be exported,

lpsName is ignored.
PROT_CHN _PIN_EXPORT_PUBLIC_KEY The public key identified by lpsName will be

exported.

lpsName
Specifies the name of the public key to be exported. The private/public key pair was installed
during manufacture. If lpsName is NULL, then the default EPP public key that is used for
symmetric key encryption is exported.

Output Param LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT lpExportSM2IssuerSignedItemOut;
typedef struct _prot_chn_export_sm2_issuer_signed_item_out
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxValue;
 DWORD dwSM2SignatureAlgorithm;
 LPWFSXDATA lpxSignature;
 } PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT,
 *LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_CHN_ERR_PIN_NOPRIVATEKEY The PIN device does not have a private key.
PROT_CHN_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

PROT_CHN_ERR_PIN_KEYNOTFOUND The data item identified by lpsName was not
found.

CWA 16926-6:2015 (E)

292

lpxValue
If a public key was requested then lpxValue contains the GM/T 2012 SM2 Public Key. If the
security item was requested then lpxValue contains the PIN’s Security Item, which may be vendor
specific.

dwSM2SignatureAlgorithm
Specifies the algorithm used to generate the Signature returned in lpxSignature. Contains one of
the following values:

Value Meaning
PROT_CHN _PIN_SIGN_NA No signature algorithm used, no signature

will be provided in lpxSignature, the data
item may still be exported.

PROT_CHN_SIGN_SM2_GM_T_2012 GM/T 2012 SM2 algorithm used.

lpxSignature
Specifies the SM2 signature of the data item exported. NULL can be returned when key
Signatures are not supported.

Comments None.

CWA 16926-6:2020 (E)

293

9.2.7 WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR

Description This command will generate a new SM2 key pair. The public key generated as a result of this
command can subsequently be obtained by calling
WFS_CMD_PIN_EXPORT_SM2_EPP_SIGNED_ITEM.

The newly generated key pair can only be used for the use defined in the dwUse flag. This flag
defines the use of the private key; its public key can only be used for the inverse function.

Input Param LPPROTCHNGENERATESM2KEYPAIRIN lpGenerateSM2KeyPairIn;
typedef struct _prot_chn_generate_sm2_keypair_in
 {
 WORD wCommand;
 LPSTR lpsKey;
 DWORD dwUse;
 } PROTCHNGENERATESM2KEYPAIRIN, *LPPROTCHNGENERATESM2KEYPAIRIN;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR.

lpsKey
Specifies the name of the new key-pair to be generated. Details of the generated key-pair can be
obtained through the WFS_INF_PIN_KEY_DETAIL_EX command.

dwUse
Specifies what the private key component of the key pair can be used for. The public key part can
only be used for the inverse function. For example, if the WFS_PIN_USESM2PRIVATESIGN
use is specified, then the private key can only be used for signature generation and the partner
public key can only be used for verification. dwUse can take one of the following values:

Value Meaning
PROT_CHN_USESM2PRIVATE Key is used as a private key for SM2

decryption.
PROT_CHN_USESM2PRIVATESIGN Key is used as a private key for SM2

Signature generation. Only data generated
within the device can be signed.

Output Param LPPROTCHNGENERATESM2KEYPAIROUT lpGenerateSM2KeyPairOut;
typedef struct __ prot_chn_generate_sm2_keypair_out
 {
 WORD wCommand;
 WORD wResult;
 } PROTCHNGENERATESM2KEYPAIROUT, *LPPROTCHNGENERATESM2KEYPAIROUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_CHN _ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

PROT_CHN _ERR_PIN_INVALID_MOD_LEN
The modulus length specified is invalid.

PROT_CHN _ERR_PIN_USEVIOLATION The specified use is not supported by this
key.

PROT_CHN _ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

PROT_CHN _ERR_PIN_KEY_GENERATION_ERROR
The EPP is unable to generate a key pair.

Comments None.

CWA 16926-6:2015 (E)

294

9.2.8 WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM

Description This command is used to export data elements from the PIN device that have been signed by a
private key within the EPP. This command is used in place of the
WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM command, when a
private key generated within the PIN device is to be used to generate the signature for the data
item. This command allows an application to define which of the following data items are to be
exported:

• The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained
from this device.

• The SM2 Public key component of a public/private key pair that exists within the PIN
device.

The public/private key pairs exported by this command are either installed during manufacture or
generated through the WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR command.

The WFS_INF_PIN_KEY_DETAIL_EX command can be used to determine the valid uses for
the exported public key.

Input Param LPPROTCHNEXPORTSM2EPPSIGNEDITEMIN lpExportSM2EPPSignedItemIn;
typedef struct _prot_chn_export_sm2_epp_signed_item_in
 {
 WORD wCommand;
 WORD wExportItemType;
 LPSTR lpsName;
 LPSTR lpsSigKey;
 DWORD dwSignatureAlgorithm;
 } PROTCHNEXPORTSM2EPPSIGNEDITEMIN,
*LPPROTCHNEXPORTSM2EPPSIGNEDITEMIN

wCommand
Is set to WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM.

wExportItemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:

Value Meaning
PROT_CHN _PIN_EXPORT_EPP_ID The Unique ID for the PIN will be exported,

lpsName is ignored.
PROT_CHN _PIN_EXPORT_PUBLIC_KEY The public key identified by lpsName will be

exported.

lpsName
Specifies the name of the public key to be exported. This can either be the name of a key-pair
generated through WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR or the name of
one of the default key-pairs installed during manufacture.

lpsSigKey
Specifies the name of the private key to use to sign the exported item.

dwSignatureAlgorithm.
Specifies the algorithm to use to generate the Signature returned in both the lpxSelfSignature and
lpxSignature fields. Contains one of the following values:

Value Meaning
PROT_CHN _PIN_SIGN_NA No signature algorithm used, no signature

will be provided in lpxSelfSignature or
lpxSignature. The requested item may still
be exported.

PROT_CHN_SIGN_SM2_GM_T_2012 GM/T 2012 SM2 algorithm used.

Output Param LPPROTCHNEXPORTSM2EPPSIGNEDITEMOUT lpExportSM2EPPSignedItemOut;

CWA 16926-6:2020 (E)

295

typedef struct _prot_chn_export_sm2_epp_signed_item_output
 {
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxSelfSignature;
 LPWFSXDATA lpxSignature;
 } PROTCHNEXPORTSM2EPPSIGNEDITEMOUT,
 *LPPROTCHNEXPORTSM2EPPSIGNEDITEMOUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_CHN _ERR_PIN_NOSM2KEYPAIR The PIN device does not have a private key.
PROT_CHN _ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

PROT_CHN _ERR_PIN_KEYNOTFOUND The data item identified by lpsName was not
found.

lpxValue
If a public key was requested then lpxValue contains the GM/T 2012 SM2 Public Key. If the
security item was requested then lpxValue contains the PIN’s Security Item, which may be vendor
specific.

lpxSelfSignature
If a public key was requested then lpxSelfSignature contains the SM2 signature of the public key
exported, generated with the key-pair’s private component. NULL can be returned when key Self-
Signatures are not supported/required.

lpxSignature
Specifies the SM2 signature of the data item exported. NULL can be returned when signatures are
not supported/required.

Comments None.

CWA 16926-6:2015 (E)

296

9.2.9 WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY

Description This command is used to load a Symmetric Key that is a SM4 key into the encryptor. The key
passed by the application is loaded in the encryption module, the (optional) signature is used
during validation, the key is decrypted using the device’s SM2 Private Key, and is then stored.
The loaded key will be discarded at any stage if any of the above fails.

The dwUse parameter restricts the cryptographic functions that the imported key can be used for.

If a Signature algorithm is specified that is not supported by the PIN Service Provider, then the
message will not be decrypted and the command fails.

Input Param LPPROTCHNIMPORTSM2SIGNEDSM4KEY lpImportSM2SignedSM4KeyIn;
typedef struct _prot_chn_import_sm2_signed_sm4_key
 {
 WORD wCommand;
 LPSTR lpsKey;
 LPSTR lpsDecryptKey;
 DWORD dwSM2EncipherAlgorithm;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwSM2SignatureAlgorithm;
 LPWFSXDATA lpxSignature;
 } PROTCHNIMPORTSM2SIGNEDSM4KEY, *LPPROTCHNIMPORTMS2SIGNEDSM4KEY;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY.lpsKey
Specifies the name of key being loaded.

lpsDecryptKey
Specifies the name of the RSA private key used to decrypt the symmetric key. See section 8.1.8
(Default Keys and Security Item loaded during manufacture) for a description of the fixed name
defined for the default decryption private key. If lpsDecryptKey is NULL then the default
decryption private key is used.

dwSM2EncipherAlgorithm
Specifies the RSA algorithm that is used, along with the private key, to decipher the imported key.
Contains one of the following values:

Value Meaning
PROT_CHN_SIGN_SM2_GM_T_2012 GM/T 2012 SM2 algorithm used.

lpxValue
Specifies the enciphered value of the key to be loaded. lpxValue contains the concatenation of the
random number (when present) and enciphered key.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise, the parameter can be a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT Key is used for encryption and decryption.
WFS_PIN_USEFUNCTION Key is used for PIN block creation.
WFS_PIN_USEMACING Key is used for MACing.
WFS_PIN_USEKEYENCKEY Key is used as key encryption key.
WFS_PIN_USEPINLOCAL Key is used only for local PIN check.

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored. WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY and
WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY can be used to delete a key
that has been imported with this command. The equivalent commands in the certificate scheme
must not be used to delete a key imported through the signature scheme.

CWA 16926-6:2020 (E)

297

lpsSigKey
If lpsSigKey is NULL then the key signature will not be used for validation and lpxSignature is
ignored. Otherwise lpsSigKey specifies the name of an Asymmetric Key (i.e. an SM2 Public Key)
previously loaded which will be used to verify the signature passed in lpxSignature.

dwSM2SignatureAlgorithm
Specifies the algorithm used to generate the Signature specified in lpxSignature. Contains one of
the following values:

Value Meaning
PROT_CHN _PIN_SIGN_NA No signature algorithm specified. No

signature verification will take place and the
content of lpxSignature is ignored.

PROT_CHN_SIGN_SM2_GM_T_2012 GM/T 2012 SM2 algorithm used.

lpxSignature
Contains the Signature associated with the key being imported. The Signature is used to validate
the key has been received from a trusted sender. The signature is generated over the contents of
the lpxValue. The lpxSignature signature contains NULL when no key validation is required.

Output Param LPPROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT lpImportSM2SignedSM4KeyOutput;
typedef struct _prot_chn_import_sm2_signed_sm4_key_output
 {
 WORD wCommand;
 WORD wResult;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
 } PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT,
 *LPPROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT;

wCommand
Is set to WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY.

wResult
The command reply codes (see general definition in the first paragraph). The following specific
error can be returned:

Value Meaning
PROT_CHN_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

PROT_CHN_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be
overwritten.

PROT_CHN_ERR_PIN_KEYNOTFOUND One of the keys specified were not found.
PROT_CHN_ERR_PIN_KEYNOVALUE The specified key encryption key is not

loaded.
PROT_CHN_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
PROT_CHN_ERR_PIN_INVALIDKEYLENGTH

The length of lpxValue is not supported.
PROT_CHN_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a

key of the specified type.
PROT_CHN_ERR_PIN_SIG_NOT_SUPP The Service Provider does not support the

Signature Algorithm requested. The key was
discarded.

PROT_CHN_ERR_PIN_SIGNATUREINVALID
The signature in the input data is invalid.
The key is not stored in the PIN.

PROT_CHN_ERR_PIN_RANDOMINVALID The encrypted random number in the input
data does not match the one previously
provided by the EPP. The key is not stored
in the PIN.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

CWA 16926-6:2015 (E)

298

Value Meaning
WFS_PIN_KCVNONE There is no key check value provided.
WFS_PIN_KCVSELF The key check value is calculated by an

encryption of the key with itself. For a
double-length or triple-length key the KCV
is generated using SM4 encryption using the
first 8 bytes of the key as the source data for
the encryption.

WFS_PIN_KCVZERO The key check value is calculated by an
encryption of a zero value with the key.

lpxKeyCheckValue
pointer to the key verification data that can be used for verification of the loaded key, NULL if
device does not have that capability.

Comments None.

CWA 16926-6:2020 (E)

299

9.2.10 China-specific Header File

This header section is to be created into a separate file from the standard xfspin.h and identifies the definitions for
the China Protocol only.
/**
* *
*xfspinchn.h XFS - Personal Identification Number Keypad (PIN) China *
*Protocol definitions *
* *
* *
* *
**/
#ifndef __INC_XFSPINCHN__H
#define __INC_XFSPINCHN__H

#ifdef __cplusplus
extern "C" {
#endif

/* be aware of alignment */
#pragma pack(push,1)

/* values of PROTCHNIN.wCommand */

#define WFS_CMD_ENC_IO_CHN_DIGEST (0x0001)
#define WFS_CMD_ENC_IO_CHN_SET_SM2_PARAM (0x0002)
#define WFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY (0x0003)
#define WFS_CMD_ENC_IO_CHN_SIGN (0x0004)
#define WFS_CMD_ENC_IO_CHN_VERIFY (0x0005)
#define WFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM (0x0006)
#define WFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR (0x0007)
#define WFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM (0x0008)
#define WFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY (0x0009)

#define PROT_CHN_RESULT_OFFSET (0)

/* values of PROTCHNOUT.wResult */

#define PROT_CHN_SUCCESS (0)
#define PROT_CHN_ERR_INVALID_CMD (-(PROT_CHN_RESULT_OFFSET + 1))
#define PROT_CHN_ERR_INVALID_DATA (-(PROT_CHN_RESULT_OFFSET + 2))
#define PROT_CHN_ERR_INVALID_KEY (-(PROT_CHN_RESULT_OFFSET + 3))

/* values of PROTCHNDIGESTOUTPUT.wResult, PROTCHNIMPORTSM2PUBLICKEYOUT.wResult,
PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT.wResult, PROTCHNEXPORTSM2EPPSIGNEDITEMOUT.wResult
and PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT_CHN_ERR_PIN_ACCESSDENIED (-(PROT_CHN_RESULT_OFFSET + 4))

/* values of PROTCHNIMPORTSM2PUBLICKEYOUT.wResult, PROTCHNDIGESTOUT.wResult,
PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT.wResult, PROTCHNEXPORTSM2EPPSIGNEDITEMOUT.wResult
and PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT_CHN_ERR_PIN_KEYNOTFOUND (-(PROT_CHN_RESULT_OFFSET + 5))

/* values of PROTCHNIMPORTSM2PUBLICKEYOUT.wResult, PROTCHNDIGESTOUT.wResult and
PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT_CHN_ERR_PIN_USEVIOLATION (-(PROT_CHN_RESULT_OFFSET + 6))
#define PROT_CHN_ERR_PIN_INVALIDKEYLENGTH (-(PROT_CHN_RESULT_OFFSET + 7))

/* additional values of PROTCHNIMPORTSM2PUBLICKEYOUT.wResult and
PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT_CHN_ERR_PIN_DUPLICATEKEY (-(PROT_CHN_RESULT_OFFSET + 8))
#define PROT_CHN_ERR_PIN_SIG_NOT_SUPP (-(PROT_CHN_RESULT_OFFSET + 9))
#define PROT_CHN_ERR_PIN_SIGNATUREINVALID (-(PROT_CHN_RESULT_OFFSET + 10))

CWA 16926-6:2015 (E)

300

/* additional values of PROTCHNSIGNOUT.wResult and
PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT_CHN_ERR_PIN_MODENOTSUPPORTED (-(PROT_CHN_RESULT_OFFSET + 11))
#define PROT_CHN_ERR_PIN_KEYNOVALUE (-(PROT_CHN_RESULT_OFFSET + 12))
#define PROT_CHN_ERR_PIN_NOCHIPTRANSACTIVE (-(PROT_CHN_RESULT_OFFSET + 13))
#define PROT_CHN_ERR_PIN_ALGORITHMNOTSUPP (-(PROT_CHN_RESULT_OFFSET + 14))

/* values of PROTCHNVERIFYOUT.wResult */

#define PROT_CHN_ERR_PIN_SIGNATUREERROR (-(PROT_CHN_RESULT_OFFSET + 15))

/* values of PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT.wResult */

#define PROT_CHN_ERR_PIN_NOPRIVATEKEY (-(PROT_CHN_RESULT_OFFSET + 16))

/* values of PROTCHNGENERATESM2KEYOUT.wResult */

#define PROT_CHN_ERR_PIN_INVALID_MOD_LEN (-(PROT_CHN_RESULT_OFFSET + 17))
#define PROT_CHN_ERR_PIN_KEY_GENERATION_ERROR (-(PROT_CHN_RESULT_OFFSET + 18))

/* values of PROTCHNEXPORTSM2EPPSIGNEDITEMOUT.wResult */

#define PROT_CHN_ERR_PIN_NOSM2KEYPAIR (-(PROT_CHN_RESULT_OFFSET + 19))

/* values of PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT.wResult */

#define PROT_CHN_ERR_PIN_NOKEYRAM (-(PROT_CHN_RESULT_OFFSET + 20))
#define PROT_CHN_ERR_PIN_RANDOMINVALID (-(PROT_CHN_RESULT_OFFSET + 21))

/* values of PROTCHNDIGESTIN.wHashAlgorithm */

#define PROT_CHN_HASH_SM3_DIGEST (0x0001)

/* values for PROTCHNIMPORTSM2PUBLICKEYIN.dwUse */

#define PROT_CHN_USESM2PUBLIC (0x00000001)
#define PROT_CHN_USESM2PUBLICVERIFY (0x00000002)

/* values of PROTCHNIMPORTSM2PUBLICKEYIN.dwSM2SignatureAlgorithm,
PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT.dwSM2SignatureAlgorithm,
PROTCHNEXPORTSM2EPPSIGNEDITEMIN.dwSignatureAlgorithm and
PROTCHNIMPORTSM2SIGNEDSM4KEY.dwSM2SignatureAlgorithm */

#define PROT_CHN_PIN_SIGN_NA (0)
#define PROT_CHN_SIGN_SM2_GM_T_2012 (0x00000001)

/* values for PROTCHNIMPORTSM2PUBLICKEYOUT.dwSM2KeyCheckMode */
#define PROT_CHN_SM2_KCV_NONE (0x00000001)
#define PROT_CHN_SM2_KCV_SM3 (0x00000002)

/* values for PROTCHNEXPORTSM2ISSUERSIGNEDITEMIN.wExportItemType,
PROTCHNEXPORTSM2EPPSIGNEDITEMIN.wExportItemType */

#define PROT_CHN_PIN_EXPORT_EPP_ID (0x0001)
#define PROT_CHN_PIN_EXPORT_PUBLIC_KEY (0x0002)

/* values for PROTCHNGENERATESM2KEYOUT.dwUse */
#define PROT_CHN_USESM2PRIVATE (0x00000001)
#define PROT_CHN_USESM2PRIVATESIGN (0x00000002)

// Used to type-cast specific command to access common fields
typedef struct _prot_chn_in
{
 WORD wCommand;
} PROTCHNIN, *LPPROTCHNIN;

// Used to type-cast specific response to access common fields
typedef struct _prot_chn_out

CWA 16926-6:2020 (E)

301

{
 WORD wCommand;
 WORD wResult;
} PROTCHNOUT, *LPPROTCHNOUT;

typedef struct _prot_chn_digest_in
{
 WORD wCommand;
 WORD wHashAlgorithm;
 LPWFSXDATA lpxDigestInput;
} PROTCHNDIGESTIN, *LPPROTCHNDIGESTIN;

typedef struct _prot_chn_digest_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxDigestOutput;
} PROTCHNDIGESTOUT, *LPPROTCHNDIGESTOUT;

typedef struct _prot_chn_sm2_algorithm_param_in
{
 WORD wCommand;
 LPWFSXDATA lpxP;
 LPWFSXDATA lpxA;
 LPWFSXDATA lpxB;
 LPWFSXDATA lpxN;
 LPWFSXDATA lpxXg;
 LPWFSXDATA lpxYg;
} PROTCHNSM2ALGORITHMPARAMIN, *LPPROTCHNSM2ALGORITHMPARAMIN;

typedef struct _prot_chn_sm2_algorithm_param_out
{
 WORD wCommand;
 WORD wResult;
} PROTCHNSM2ALGORITHMPARAMOUT, *LPPROTCHNSM2ALGORITHMPARAMOUT;

typedef struct _prot_chn_import_sm2_public_key_in
{
 WORD wCommand;
 LPSTR lpsKey;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwSM2SignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} PROTCHNIMPORTSM2PUBLICKEYIN, *LPPROTCHNIMPORTSM2PUBLICKEYIN;

typedef struct _prot_chn_import_sm2_public_key_out
{
 WORD wCommand;
 WORD wResult;
 DWORD dwSM2KeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} PROTCHNIMPORTSM2PUBLICKEYOUT, *LPPROTCHNIMPORTSM2PUBLICKEYOUT;

typedef struct _prot_chn_sign_in
{
 WORD wCommand;
 LPSTR lpsKey;
 LPSTR lpSignerID;
 LPWFSXDATA lpxPlaintextData;
} PROTCHNSIGNIN, *LPPROTCHNSIGNIN;

typedef struct _prot_chn_sign_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxSignData;
} PROTCHNSIGNOUT, *LPPROTCHNSIGNOUT;

CWA 16926-6:2015 (E)

302

typedef struct _prot_chn_verify_in
{
 WORD wCommand;
 LPSTR lpsKey;
 LPWFSXDATA lpxPlaintextData;
 LPWFSXDATA lpxSignData;
} PROTCHNVERIFYIN, *LPPROTCHNVERIFYIN;

typedef struct _prot_chn_verify_out
{
 WORD wCommand;
 WORD wResult;
} PROTCHNVERIFYOUT, *LPPROTCHNVERIFYOUT;

typedef struct _prot_chn_export_sm2_issuer_signed_item_in
{
 WORD wCommand;
 WORD wExportItemType;
 LPSTR lpsName;
} PROTCHNEXPORTSM2ISSUERSIGNEDITEMIN, *LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMIN;

typedef struct _prot_chn_export_sm2_issuer_signed_item_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxValue;
 WORD dwSM2SignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} PROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT, *LPPROTCHNEXPORTSM2ISSUERSIGNEDITEMOUT;

typedef struct _prot_chn_generate_sm2_keypair_in
{
 WORD wCommand;
 LPSTR lpsKey;
 DWORD dwUse;
} PROTCHNGENERATESM2KEYPAIRIN, *LPPROTCHNGENERATESM2KEYPAIRIN;

typedef struct _prot_chn_generate_sm2_keypair_out
{
 WORD wCommand;
 WORD wResult;
} PROTCHNGENERATESM2KEYPAIROUT, *LPPROTCHNGENERATESM2KEYPAIROUT;

typedef struct _prot_chn_export_sm2_epp_signed_item_in
{
 WORD wCommand;
 WORD wExportItemType;
 LPSTR lpsName;
} PROTCHNEXPORTSM2EPPSIGNEDITEMIN, *LPPROTCHNEXPORTSM2EPPSIGNEDITEMIN;

typedef struct _prot_chn_export_sm2_epp_signed_item_out
{
 WORD wCommand;
 WORD wResult;
 LPWFSXDATA lpxValue;
 WORD dwSM2SignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} PROTCHNEXPORTSM2EPPSIGNEDITEMOUT, *LPPROTCHNEXPORTSM2EPPSIGNEDITEMOUT;

typedef struct _prot_chn_import_sm2_signed_sm4_key
{
 LPSTR lpsKey;
 LPSTR lpsDecryptKey;
 DWORD dwSM2EncipherAlgorithm;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwSM2SignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} PROTCHNIMPORTSM2SIGNEDSM4KEY, *LPPROTCHNIMPORTSM2SIGNEDSM4KEY;

CWA 16926-6:2020 (E)

303

typedef struct _prot_chn_import_sm2_signed_sm4_key_output
{
 WORD wCommand;
 WORD wResult;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} PROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT, *LPPROTCHNIMPORTSM2SIGNEDSM4KEYOUTPUT;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSPINCHN__H */

CWA 16926-6:2015 (E)

304

10. Appendix–C (Standardized lpszExtra fields)

This section contains the values that have been standardized for the lpszExtra fields within previous releases of the
PIN specification. These values are still applicable to this version of the standard and must be supported if the
functionality is supported.

10.1 WFS_INF_PIN_STATUS

The following standardized lpszExtra values have been defined for the WFS_INF_PIN_STATUS command.

For Remote Key Loading using Certificates, the following key/value pairs indicate the level of support of the
Service Provider. If these pairs are not returned then this indicates the Service Provider does not support the
corresponding feature:

CERTIFICATESTATE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a hexadecimal value. This
state determines which public verification or encryption key should be read out of the device. For example
CERTIFICATESTATE =0x00000001 indicates that the state of the Encryptor is Primary. The possible values are
the following:

Value Meaning
WFS_PIN_CERT_PRIMARY The encryption module indicates that all pre-

loaded certificates have been loaded and that
primary verification certificates will be
accepted for the commands
WFS_CMD_PIN_LOAD_CERTIFICATE
or
WFS_CMD_PIN_REPLACE_CERTIFICA
TE

WFS_PIN_CERT_SECONDARY The encryption module indicates that
primary verification certificates will not be
accepted and only secondary verification
certificates will be accepted. If primary
certificates have been compromised (which
the certificate authority or the host detects),
then secondary certificates should be used in
any transaction. This is done by calling the
WFS_CMD_PIN_LOAD_CERTIFICATE
command or the
WFS_CMD_PIN_REPLACE_CERTIFICA
TE.

WFS_PIN_CERT_NOTREADY The certificate module is not ready. (The
device is powered off or physically not
present).

CWA 16926-6:2020 (E)

305

10.2 WFS_INF_PIN_CAPABILITIES

The following standardized lpszExtra values have been defined for the WFS_INF_PIN_CAPABILITIES command.

For German HSMs this parameter will contain the following information:

• HSM=<HSM vendor> - (can contain the values KRONE,ASCOM,IBM or NCR)

• JOURNAL=<0/1> - (0 means that the HSM does not support journaling by the
WFS_CMD_PIN_GET_JOURNAL command, 1 means it supports journaling)

For Remote Key Loading the following key/value pairs indicate the level of support of the Service Provider. If
these pairs are not returned then this indicates the Service Provider does not support the corresponding feature:

REMOTE_KEY_SCHEME=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. REMOTE_KEY_SCHEME will specify to the user which type(s) of Remote
Key Loading/Authentication is supported. For example,
“REMOTE_KEY_SCHEME=0x00000002” indicates that three-party certificates are supported.
The support level is defined as a combination of the following flags:

Value Meaning
WFS_PIN_RSA_AUTH_2PARTY_SIG Two-party Signature based authentication.
WFS_PIN_RSA_AUTH_3PARTY_CERT Three-party Certificate based authentication.

RSA_SIGN_ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA_SIGN_ALGORITHM will specify what type(s) of RSA Signature
Algorithms is supported. For example, “RSA_SIGN_ALGORITHM=0x00000001” indicates that
RSASSA_PKCS1_V1_5 is supported. The support level is defined as a combination of the
following flags:

Value Meaning
WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 SSA_PKCS_V1_5 Signatures supported.
WFS_PIN_SIGN_RSASSA_PSS SSA_PSS Signatures supported.

RSA_CRYPT_ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA_CRYPT_ALGORITHM will specify what type(s) of RSA encipherment
algorithms is supported. For example, “RSA_CRYPT_ALGORITHM=0x00000002” indicates
that RSAES_OAEP is supported. The support level is defined as a combination of the following
flags:

Value Meaning
WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 AES_PKCS_V1_5 algorithm supported.
WFS_PIN_CRYPT_RSAES_OAEP AES_OAEP algorithm supported.

RSA_KEY_CHECK_MODE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. RSA_KEY_CHECK_MODE will specify what type of key check value can
be returned from a RSA key import function. For example,
“RSA_KEY_CHECK_MODE=0x00000001” indicates that SHA1 is supported. The support level
is defined as a combination of the following flags:

Value Meaning
WFS_PIN_RSA_KCV_SHA1 The key check value contains a SHA 1 of the

public key as defined in Ref. 3.
WFS_PIN_RSA_KCV_SHA256 The key check value contains a SHA256 of

the public key, as defined in ISO/IEC 10118-
3:2004 [Ref. 40] and FIPS 180-2 [Ref. 41].

SIGNATURE_CAPABILITIES=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of
a hexadecimal value. SIGNATURE_CAPABILITIES will specify which capabilities are
supported by the Signature scheme. The signature capabilities are defined as a combination of the
following flags:

CWA 16926-6:2015 (E)

306

Value Meaning
WFS_PIN_SIG_GEN_RSA_KEY_PAIR Specifies if the Service Provider supports the

RSA Signature Scheme
WFS_CMD_PIN_GENERATE_RSA_KEY
_PAIR and
WFS_CMD_PIN_EXPORT_RSA_EPP_SIG
NED commands.

WFS_PIN_SIG_RANDOM_NUMBER Specifies if the Service Provider returns a
random number from the
WFS_CMD_PIN_START_KEY_EXCHAN
GE command within the RSA Signature
Scheme.

WFS_PIN_SIG_EXPORT_EPP_ID Specifies if the Service Provider supports
exporting the EPP Security Item within the
RSA Signature Scheme.

For EMV support the following key/value pairs indicate the level of support of the Service Provider. Note that a
series of this key/value pairs may occur that lists all import schemes supported by the PIN Service Provider. If these
pairs are not returned then this indicates that the Service Provider does not support the corresponding feature.

EMV_IMPORT_SCHEME=<0xnnnn>, this field will specify to the user how the specified key
will be imported. nnnn is the ASCII representation of a single hexadecimal value which defines
the import scheme. A series of these pairs may be returned to support multiple import schemes.

The specific values that are used for nnnn are defined within the ‘C’ include file see section “C –
Header File”. The following descriptions use the ‘C’ constant name.

Value Meaning
WFS_PIN_EMV_IMPORT_PLAIN_CA A plain text CA public key is imported with

no verification.
WFS_PIN_EMV_IMPORT_CHKSUM_CA A plain text CA public key is imported using

the EMV 2000 verification algorithm. See
[Ref. 4].

WFS_PIN_EMV_IMPORT_EPI_CA A CA public key is imported using the self-
sign scheme defined in the Europay
International, EPI CA Module Technical –
Interface specification Version 1.4, [Ref. 5]

WFS_PIN_EMV_IMPORT_ISSUER An Issuer public key is imported as defined
in EMV 2000 Book II, [Ref. 4].

WFS_PIN_EMV_IMPORT_ICC An ICC public key is imported as defined in
EMV 2000 Book II, [Ref. 4].

WFS_PIN_EMV_IMPORT_ICC_PIN An ICC PIN public key is imported as
defined in EMV 2000 Book II, [Ref. 4].

WFS_PIN_EMV_IMPORT_PKCSV1_5_CA A CA public key is imported and verified
using a signature generated with a private
key for which the public key is already
loaded.

EMV_HASH=<0xnnnn>, this field will specify to the user which type of Hash Algorithm is
supported by the Service Provider. nnnn is the ASCII representation of the combination of hash
algorithms supported by the Service Provider.

Value Meaning
WFS_PIN_HASH_SHA1_DIGEST The SHA 1 digest algorithm is supported by

the WFS_CMD_PIN_DIGEST command.

The capabilities associated with key loading in multiple parts are defined by the following:

PIN_IMPORT_KEY_PARTS=<0/1> - (0 means the device does not support key import in
multiple parts, 1 means the device supports key import in multiple parts)

A Service Provider that supports the WFS_CMD_PIN_ENCIO command shall add information about what
protocols it supports as:

ENCIOPROTOCOLS=0xnnnn where nnnn is the ASCII representation of the combination of
the values supported for the wProtocol parameter.

CWA 16926-6:2020 (E)

307

A Service Provider may automatically generate a beep on key presses, this is reported by the following key=value
pair:

AUTOBEEP=<0/1> - (0 means no beeps are generated automatically, 1 means beeps are
generated automatically)

For devices where the secure PIN keypad is integrated within a generic Win32 keyboard then, if the following pair
is present:

“KYBD=COMBINED_WIN32” - then standard Win32 key events will be generated for any key
when there is no ‘active’ GET_DATA or GET_PIN command.

Note that XFS continues to support PIN keys define only, and is not extended to support new
alphanumeric keys.

This feature assists in developing generic browser based applications which need to access both
PIN and generic keyboards.

When an application wishes to receive XFS-based key information then he can use the XFS
GET_DATA and GET_PIN functions.

No Win32 keystrokes are generated for any key (active or not) in a combined device when
GET_DATA or GET_PIN are ‘active’.

When no GET_DATA or GET_PIN function is ‘active’ then any key press will result in a
Win32 key event. These events can be ignored by the application, if required.

Note that this does not compromise secure PIN entry – there will be no Win32 keyboard events
during PIN collection.

On terminals and kiosks with separate PIN and Win32 keyboards, the Win32 keyboard behaves
purely as a PC keyboard and the PIN device behaves only as an XFS device.

CWA 16926-6:2015 (E)

308

11. Appendix–D (TR-31 Key Use)

This section contains a mapping of key usages as defined for TR-31 (see ANS X9 TR-31 2010 [Ref. 35]) to the
XFS use values defined in this document. The XFS use values are those defined for the fwUse or dwUse
input/output fields of a number of different PIN commands.

Keys imported within an ANS TR-31 key block have a usage encoded into the key block header (represented by
lpxKeyBlockHeader in the WFS_INF_PIN_KEY_DETAIL and WFS_INF_PIN_KEY_DETAIL_EX commands),
This usage specified in the key block header may be more specific than the fwUse/dwUse values defined in this
document. For consistency, the following table defines the corresponding fwUse/dwUse value for each TR-31 key
usage:

TR-31
Value

TR-31
Mode(s) of Use

Definition XFS Use (fwUse/dwUse)

“B0” “X” BDK Base Derivation Key WFS_PIN_USEKEYDERKEY

“B1” “X” DUKPT Initial Key (also known
as IPEK)

WFS_PIN_USEKEYDERKEY**
WFS_PIN_USEPINREMOTE
WFS_PIN_USEFUNCTION*
WFS_PIN_USECRYPT
WFS_PIN_USEMACING

“C0” “C”, “G”, “V” CVK Card Verification Key NA

“D0” “B”, “D”, “E” Data Encryption using ECB,
CBC, CFB, OFB, CCM or CTR

WFS_PIN_USECRYPT

“E0” “X” EMV/chip Issuer Master Key:
Application cryptograms

WFS_PIN_USERSAPUBLICVERIFY

“E1” “X” EMV/chip Issuer Master Key:
Secure Messaging for

Confidentiality

WFS_PIN_USERSAPUBLICVERIFY

“E2” “X” EMV/chip Issuer Master Key:
Secure Messaging for Integrity

WFS_PIN_USERSAPUBLICVERIFY

“E3” “X” EMV/chip Issuer Master Key:
Data Authentication Code

WFS_PIN_USERSAPUBLICVERIFY

“E4” “X” EMV/chip Issuer Master Key:
Dynamic Numbers

WFS_PIN_USERSAPUBLICVERIFY

“E5” “X” EMV/chip Issuer Master Key:
Card Personalization

WFS_PIN_USERSAPUBLICVERIFY

“E6” “X” EMV/chip Issuer Master Key:
Other

WFS_PIN_USERSAPUBLICVERIFY

“I0” “N” Initialization Vector (IV) NA

“K0” “B”, “D”, “E” Key Encryption or wrapping WFS_PIN_USEKEYENCKEY
WFS_PIN_USESVENCKEY

“K1” “B”, “D”, “E” TR-31 Key Block Protection Key WFS_PIN_USEANSTR31MASTER

“M0” “C”, “G”, “V” ISO 16609 MAC algorithm 1
(using TDEA)

WFS_PIN_USEMACING

“M1” “C”, “G”, “V” ISO 9797-1 MAC Algorithm 1 WFS_PIN_USEMACING

“M2” “C”, “G”, “V” ISO 9797-1 MAC Algorithm 2 WFS_PIN_USEMACING

“M3” “C”, “G”, “V” ISO 9797-1 MAC Algorithm 3 WFS_PIN_USEMACING

“M4” “C”, “G”, “V” ISO 9797-1 MAC Algorithm 4 WFS_PIN_USEMACING

CWA 16926-6:2020 (E)

309

TR-31
Value

TR-31
Mode(s) of Use

Definition XFS Use (fwUse/dwUse)

“M5” “C”, “G”, “V” ISO 9797-1 MAC Algorithm 5 WFS_PIN_USEMACING

“P0” “B”, “D”, “E” PIN Encryption WFS_PIN_USEPINREMOTE
WFS_PIN_USEFUNCTION*

“V0” “C”, “G”, “V” PIN verification, KPV, other
algorithm

WFS_PIN_USEPINLOCAL
WFS_PIN_USEFUNCTION*

“V1” “C”, “G”, “V” PIN verification, IBM 3624 WFS_PIN_USEPINLOCAL
WFS_PIN_USEFUNCTION*

“V2” “C”, “G”, “V” PIN Verification, VISA PVV WFS_PIN_USEPINLOCAL
WFS_PIN_USEFUNCTION*

* Note that WFS_PIN_USEFUNCTION is listed here for backward compatibility, but
WFS_PIN_USEPINLOCAL/WFS_PIN_USEPINREMOTE is the more accurate single-use value.

** The Base Derivation Key is used to derive the IPEK. When a DUKPT IPEK is loaded, derived future keys are
stored and the IPEK deleted. Therefore, while the IPEK is no longer loaded, future keys directly related to it are.
WFS_PIN_USEPINREMOTE and optionally WFS_PIN_USEFUNCTION are included as the primary use of an
IPEK future key is to create a variant for PIN encryption. If the optional variant data encryption and MAC keys are
supported, WFS_PIN_USECRYPT and WFS_PIN_USEMACING must be included. To use the optional data or
MAC keys in a WFS_PIN_CMD_CRYPT command, lpsKey must be the name of the IPEK and wAlgorithm must
be WFS_PIN_CRYPTTRIDESCBC or WFS_PIN_CRYPTTRIDESMAC. If the optional data encryption key is
being used, wMode must be WFS_PIN_MODEENCRYPT. The optional variant response data encryption and
MAC keys are not supported.

CWA 16926-6:2015 (E)

310

12. Appendix-E (DUKPT)

Definitions and Abbreviations

DUKPT Derived Unique Key Per Transaction
BDK Base Derivation Key
IPEK Initial PIN Encryption Key
KSN Key Serial Number.
TRSM Tamper Resistant Security Module.
For additional information see reference 45.

12.1 Default Key Name

The DUKPT IPEK key is given a fixed name so multi-vendor applications can be developed without the need for
vendor specific configuration tools.

If DUKPT is supported, this key must be included in the WFS_INF_PIN_KEY_DETAIL_EX output.
Item Name Description
“_DUKPTIPEK” This key represents the IPEK, the derived future keys stored during import of the

IPEK and the variant per transaction keys (PIN and optionally data and MAC).

	1. 0BIntroduction
	1.1 12BBackground to Release 3.40
	1.2 13BXFS Service-Specific Programming

	2. 1BPIN Keypad
	2.1 14BEncrypting Touch Screen (ETS)

	3. 2BReferences
	4. 3BInfo Commands
	4.1 15BWFS_INF_PIN_STATUS
	4.2 16BWFS_INF_PIN_CAPABILITIES
	4.3 17BWFS_INF_PIN_KEY_DETAIL
	4.4 18BWFS_INF_PIN_FUNCKEY_DETAIL
	4.5 19BWFS_INF_PIN_HSM_TDATA
	4.6 20BWFS_INF_PIN_KEY_DETAIL_EX
	4.7 21BWFS_INF_PIN_SECUREKEY_DETAIL
	4.8 22BWFS_INF_PIN_QUERY_LOGICAL_HSM_DETAIL
	4.9 23BWFS_INF_PIN_QUERY_PCIPTS_DEVICE_ID
	4.10 24BWFS_INF_PIN_GET_LAYOUT
	4.11 25BWFS_INF_PIN_KEY_DETAIL_340

	5. 4BExecute Commands
	5.1 26BNormal PIN Commands
	5.1.1 56BWFS_CMD_PIN_CRYPT
	5.1.2 57BWFS_CMD_PIN_IMPORT_KEY
	5.1.3 58BWFS_CMD_PIN_DERIVE_KEY
	5.1.4 59BWFS_CMD_PIN_GET_PIN
	5.1.5 60BWFS_CMD_PIN_LOCAL_DES
	5.1.6 61BWFS_CMD_PIN_CREATE_OFFSET
	5.1.7 62BWFS_CMD_PIN_LOCAL_EUROCHEQUE
	5.1.8 63BWFS_CMD_PIN_LOCAL_VISA
	5.1.9 64BWFS_CMD_PIN_PRESENT_IDC
	5.1.10 65BWFS_CMD_PIN_GET_PINBLOCK
	5.1.11 66BWFS_CMD_PIN_GET_DATA
	5.1.12 67BWFS_CMD_PIN_INITIALIZATION
	5.1.13 68BWFS_CMD_PIN_LOCAL_BANKSYS
	5.1.14 69BWFS_CMD_PIN_BANKSYS_IO
	5.1.15 70BWFS_CMD_PIN_RESET
	5.1.16 71BWFS_CMD_PIN_HSM_SET_TDATA
	5.1.17 72BWFS_CMD_PIN_SECURE_MSG_SEND
	5.1.18 73BWFS_CMD_PIN_SECURE_MSG_RECEIVE
	5.1.19 74BWFS_CMD_PIN_GET_JOURNAL
	5.1.20 75BWFS_CMD_PIN_IMPORT_KEY_EX
	5.1.21 76BWFS_CMD_PIN_ENC_IO
	5.1.22 77BWFS_CMD_PIN_HSM_INIT
	5.1.23 78BWFS_CMD_PIN_SECUREKEY_ENTRY
	5.1.24 79BWFS_CMD_PIN_GENERATE_KCV
	5.1.25 80BWFS_CMD_PIN_SET_GUIDANCE_LIGHT
	5.1.26 81BWFS_CMD_PIN_MAINTAIN_PIN
	5.1.27 82BWFS_CMD_PIN_KEYPRESS_BEEP
	5.1.28 83BWFS_CMD_PIN_SET_PINBLOCK_DATA
	5.1.29 84BWFS_CMD_PIN_SET_LOGICAL_HSM
	5.1.30 85BWFS_CMD_PIN_IMPORT_KEYBLOCK
	5.1.31 86BWFS_CMD_PIN_POWER_SAVE_CONTROL
	5.1.32 87BWFS_CMD_PIN_DEFINE_LAYOUT
	5.1.33 88BWFS_CMD_PIN_START_AUTHENTICATE
	5.1.34 89BWFS_CMD_PIN_AUTHENTICATE
	5.1.35 90BWFS_CMD_PIN_GET_PINBLOCK_EX
	5.1.36 91BWFS_CMD_PIN_SYNCHRONIZE_COMMAND
	5.1.37 92BWFS_CMD_PIN_CRYPT_340
	5.1.38 93BWFS_CMD_PIN_GET_PINBLOCK_340
	5.1.39 94BWFS_CMD_PIN_IMPORT_KEY_340

	5.2 27BCommon commands for Remote Key Loading Schemes
	5.2.1 95BWFS_CMD_PIN_START_KEY_EXCHANGE

	5.3 28BRemote Key Loading Using Signatures
	5.3.1 96BWFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY
	5.3.2 97BWFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM
	5.3.3 98BWFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY
	5.3.4 99BWFS_CMD_PIN_GENERATE_RSA_KEY_PAIR
	5.3.5 100BWFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM

	5.4 29BRemote Key Loading with Certificates
	5.4.1 101BWFS_CMD_PIN_LOAD_CERTIFICATE
	5.4.2 102BWFS_CMD_PIN_GET_CERTIFICATE
	5.4.3 103BWFS_CMD_PIN_REPLACE_CERTIFICATE
	5.4.4 104BWFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY
	5.4.5 105BWFS_CMD_PIN_LOAD_CERTIFICATE_EX
	5.4.6 106BWFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY_EX

	5.5 30BEMV
	5.5.1 107BWFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY
	5.5.2 108BWFS_CMD_PIN_DIGEST

	6. 5BEvents
	6.1 31BWFS_EXEE_PIN_KEY
	6.2 32BWFS_SRVE_PIN_INITIALIZED
	6.3 33BWFS_SRVE_PIN_ILLEGAL_KEY_ACCESS
	6.4 34BWFS_SRVE_PIN_OPT_REQUIRED
	6.5 35BWFS_SRVE_PIN_CERTIFICATE_CHANGE
	6.6 36BWFS_SRVE_PIN_HSM_TDATA_CHANGED
	6.7 37BWFS_SRVE_PIN_HSM_CHANGED
	6.8 38BWFS_EXEE_PIN_ENTERDATA
	6.9 39BWFS_SRVE_PIN_DEVICEPOSITION
	6.10 40BWFS_SRVE_PIN_POWER_SAVE_CHANGE
	6.11 41BWFS_EXEE_PIN_LAYOUT
	6.12 42BWFS_EXEE_PIN_DUKPT_KSN

	7. 6BC - Header File
	8. 7BAppendix-A
	8.1 43BRemote Key Loading Using Signatures
	8.1.1 109BRSA Data Authentication and Digital Signatures
	8.1.2 110BRSA Secure Key Exchange using Digital Signatures
	8.1.3 111BInitialization Phase – Signature Issuer and ATM PIN
	8.1.4 112BInitialization Phase – Signature Issuer and Host
	8.1.5 113BKey Exchange – Host and ATM PIN
	8.1.6 114BKey Exchange (with random number) – Host and ATM PIN
	8.1.7 115BEnhanced RKL, Key Exchange (with random number) – Host and ATM PIN
	8.1.8 116BDefault Keys and Security Item loaded during manufacture

	8.2 44BRemote Key Loading Using Certificates
	8.2.1 117BCertificate Exchange and Authentication
	8.2.2 118BRemote Key Exchange
	8.2.3 119BReplace Certificate
	8.2.4 120BPrimary and Secondary Certificates
	8.2.5 121BTR34 BIND To Host
	8.2.6 122BTR34 Key Transport
	8.2.6.1 170BOne Pass
	8.2.6.2 171BTwo Pass

	8.2.7 123BTR34 REBIND To New Host
	8.2.8 124BTR34 Force REBIND To New Host
	8.2.9 125BTR34 UNBIND From Host
	8.2.10 126BTR34 Force UNBIND From Host

	8.3 45BGerman ZKA GeldKarte (Deutsche Kreditwirtschaft)
	8.3.1 127BHow to use the SECURE_MSG commands
	8.3.2 128BProtocol WFS_PIN_PROTISOAS
	8.3.3 129BProtocol WFS_PIN_PROTISOLZ
	8.3.4 130BProtocol WFS_PIN_PROTISOPS
	8.3.5 131BProtocol WFS_PIN_PROTCHIPZKA
	8.3.6 132BProtocol WFS_PIN_PROTRAWDATA
	8.3.7 133BProtocol WFS_PIN_PROTPBM
	8.3.8 Protocol WFS_PIN_PROTHSMLDI
	8.3.9 135BProtocol WFS_PIN_PROTGENAS
	8.3.10 136BProtocol WFS_PIN_PROTCHIPINCHG
	8.3.11 137BProtocol WFS_PIN_PROTPINCMP
	8.3.11.1 172BUse of WFS_PIN_PROTPINCMP with non-GeldKarte ZKA PIN Management

	8.3.12 138BProtocol WFS_PIN_PROTISOPINCHG
	8.3.13 139BCommand Sequence

	8.4 46BEMV Support
	8.4.1 140BKeys loading
	8.4.2 141BPIN Block Management
	8.4.3 142BSHA-1 Digest

	8.5 47BFrench Cartes Bancaires
	8.5.1 143BData Structure for WFS_CMD_PIN_ENC_IO
	8.5.2 144BCommand Sequence

	8.6 48BSecure Key Entry
	8.6.1 145BKeyboard Layout
	8.6.1.1 173BfwKeyEntryMode == WFS_PIN_SECUREKEY_REG_UNIQUE
	8.6.1.2 174BfwKeyEntryMode == WFS_PIN_SECUREKEY_REG_SHIFT
	8.6.1.3 175BfwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_SHIFT
	8.6.1.4 176BfwKeyEntryMode == WFS_PIN_SECUREKEY_IRREG_UNIQUE

	8.6.2 146BCommand Usage

	8.7 49BWFS_PIN_USERESTRICTEDKEYENCKEY key usage
	8.7.1 147BCommand Usage

	8.8 50BWFS_CMD_PIN_IMPORT_KEY_340 command Input/Output Parameters
	8.8.1 148BImporting a 3DES 16-byte terminal master key using signature-based remote key loading (SRKL):
	8.8.2 149BImporting a 16-byte DES key for PIN encryption with a key check value in the input
	8.8.3 150BImporting a 16-byte DES key for MACing (MAC Algorithm 3)
	8.8.4 151BImporting a 2048-bit Host RSA public key
	8.8.5 152BImporting a 24-byte DES symmetric data encryption key via TR-31 keyblock

	9. 8BAppendix-B (Country Specific WFS_CMD_PIN_ENC_IO protocols)
	9.1 51BLuxemburg Protocol
	9.1.1 153BWFS_CMD_ENC_IO_LUX_LOAD_APPKEY
	9.1.2 154BWFS_CMD_ENC_IO_LUX_GENERATE_MAC
	9.1.3 155BWFS_CMD_ENC_IO_LUX_CHECK_MAC
	9.1.4 156BWFS_CMD_ENC_IO_LUX_BUILD_PINBLOCK
	9.1.5 157BWFS_CMD_ENC_IO_LUX_DECRYPT_TDES
	9.1.6 158BWFS_CMD_ENC_IO_LUX_ENCRYPT_TDES
	9.1.7 159BLuxemburg-specific Header File

	9.2 52BChina Protocol
	9.2.1 160BWFS_CMD_ENC_IO_CHN_DIGEST
	9.2.2 161BWFS_CMD_ENC_IO_CHN_SET_SM2_PARAM
	9.2.3 162BWFS_CMD_ENC_IO_CHN_IMPORT_SM2_PUBLIC_KEY
	9.2.4 163BWFS_CMD_ENC_IO_CHN_SIGN
	9.2.5 164BWFS_CMD_ENC_IO_CHN_VERIFY
	9.2.6 165BWFS_CMD_ENC_IO_CHN_EXPORT_SM2_ISSUER_SIGNED_ITEM
	9.2.7 166BWFS_CMD_ENC_IO_CHN_GENERATE_SM2_KEY_PAIR
	9.2.8 167BWFS_CMD_ENC_IO_CHN_EXPORT_SM2_EPP_SIGNED_ITEM
	9.2.9 168BWFS_CMD_ENC_IO_CHN_IMPORT_SM2_SIGNED_SM4_KEY
	9.2.10 169BChina-specific Header File

	10. 9BAppendix–C (Standardized lpszExtra fields)
	10.1 53BWFS_INF_PIN_STATUS
	10.2 54BWFS_INF_PIN_CAPABILITIES

	11. 10BAppendix–D (TR-31 Key Use)
	12. 11BAppendix-E (DUKPT)
	12.1 55BDefault Key Name

